高压作用下几种纳米材料的性质研究

来源 :中国科学技术大学 | 被引量 : 0次 | 上传用户:ccll
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
高压科学是现代科学技术的一个重要的研究领域。压力是温度和组分之外的另一维系数,压力作用于物质能够有效的减小物质的原子或分子间的距离,对物质的晶体结构,能带结构和电子轨道结构进行调制。物质在高压下往往能够表现出常压下所没有的新性质,从而提供人们一种新途径来解释各种现象。高压拉曼散射光谱是高压物性研究中的重要手段之一,在高压下,许多关于声子谱、电-声相互作用以及晶格振动的非简谐振动等信息都可以通过拉曼光谱来获得,采用拉曼光谱可以对物质随压力发生的结构相变进行研究工作。纳米材料与体材料相比,有着尺寸效应、限域效应和晶界效应等性质。在高压下,纳米材料往往能够表现出和体材料不同的物理化学性质,使得材料的新相和新材料的发现成为可能。本文采用高压技术手段对纳米材料进行相变研究,主要内容如下:   第一章简要介绍了纳米材料和纳米材料技术,并对本实验室所采用的高压技术手段和研究方法进行了简单概括。   第二章利用原位高压拉曼光谱研究手段,研究了典型宽禁带半导体发光材料ZnSe纳米棒堆球和纳米带堆球的高压结构相变,ZnSe纳米棒堆球在9.8 GPa发生了从闪锌矿向辰砂矿的结构相变,在11.4GPa开始向岩盐矿相转变,并在18GPa左右完成相变,而到了20GPa则发生晶体-非晶转变。ZnSe纳米带堆球没有发现闪锌矿-辰砂矿的相变特征,直接从11.4GPa开始转变为岩盐矿,并到实验最高压力25.8 GPa依然处于岩盐矿相。以上两个相变过程均为可逆相变,此外,ZnSe纳米棒堆球拉曼峰的移动速度比ZnSe纳米带堆球更快,本论文通过线性拟合计算出了样品的压力系数和格林埃森常数。   第三章我们采用化学自组装法制备了聚甲基丙烯酸甲酯(PMMA)蛋白石和CeO2∶Eu3+反蛋白石光子晶体,并对其进行了结构和光学性能上的表征。所制备的样品具有三维周期性fcc结构,并显示出了非常明显的光子禁带和自发辐射抑制作用。为了探索压力对样品的光子带隙调制作用,我们对样品进行了加压研究工作,然而并没有取得预想中的结果,还需要进一步的调试工作。   第四章对整个工作做出了总结。
其他文献
量子信息学是二十世纪八十年代兴起的一门整合了量子力学和信息科学的新兴学科。作为量子信息学的核心部分,量子纠缠为有效地实现量子通信和量子计算供了重要的物理资源,并且
学位
在过去几十年,自旋电子学作为一门新兴学科迅速发展,引起了人们的广泛关注。有机自旋电子学是基于有机功能材料,研究电子自旋的注入、探测、输运、控制等的一门学科,是自旋电子学
纳米晶硅(Si-NC)被认为是Er的有效宽带光敏化剂之一。Si-NC在可见光区有非常宽的宽带吸收,其吸收截面是Er的一万多倍。当Er掺入Si-NC中,其激发截面可达7×10-17cm2。掺Er硅的PL
本文的第一章介绍了高温超导体的发展历史,重点叙述了磁通动力学在高温超导体中的地位及其近年来的发展与热点,并引出了本文研究的主要内容-磁通运动的可逆性与不可逆性。第
本论文采用第一性原理计算方法研究了钙钛矿结构的磁性功能材料SrRnO3的电子结构,重点讨论了掺杂对此类材料的晶体结构,电学,磁学等物理性质的影响。主要内容包括以下几个方
物理系统中的孤子具有在传播过程中能量不扩散,波形不发生改变的特点,所以早期人们通常称孤子为“孤立波”。直到1965年,Zabusky和Kruskal在数值计算中发现等离子体中孤立波
水中的目标散射的相关问题对目标探测和识别起着重要的作用。一般来说,如水雷、舰艇、潜艇等目标都是由弹性体构成的,而弹性体在受到入射波作用后,会辐射弹性波,这其中包含了
学位