论文部分内容阅读
压裂技术是保障油气田高产稳产的主要措施。压裂作业完成后产生大量的压裂返排液,它产量大、组成复杂、黏度大、化学耗氧量(COD)高、聚合物含量高和乳化程度高,单独使用常规处理工艺很难使其达到排放标准。化学氧化处理法具有不改变现有工艺流程,操作弹性高等优点被普遍使用,但是由于大多数氧化处理药剂二次污染大、存储有安全隐患等问题,制约着化学氧化法的应用。高铁酸钾(K2FeO4)因其较高的氧化还原电位、较大的电化学理论容量与较强的化学氧化性能,被还原后的产物绿色环保无污染,同时具有破乳、氧化、絮凝、吸附、杀菌和存储相对安全等优点,是集多功能于一体的新型绿色高效水处理药剂,在油田废水处理领域具有重要的理论研究价值和实际应用前景。本文采用次氯酸盐氧化法制备高铁酸钾,考察了其溶液氧化稳定性的关键影响因素;建立了高铁酸钾绿色复合氧化体系,以压裂返排液中瓜胶为特征污染物的模型化合物,通过热力学计算和动力学研究,结合表征对瓜胶的氧化作用机制进行探讨;提出了预处理-氧化-絮凝处理压裂返排液的新工艺,并对破乳、絮凝、氧化作用机制进行研究;通过超声和外加电场强化传质,探索了其与压裂返排液氧化处理的协同作用;最后进行现场压裂返排液氧化处理研究,为压裂返排液深度处理及回注使用提供新思路。主要研究结果如下:(1)通过次氯酸盐氧化法合成K2FeO4的适宜工艺参数为:以Fe(NO3)3为铁源,其初始浓度为2 mol/L,KOH浓度为11 mol/L,反应温度为15℃,反应时间为40 min,合成了正交晶相K2FeO4产物,其产率为38%,纯度为88.2%。K2FeO4在碱性溶液体系中稳定性较好,添加KCl或(NH4)2S2O8可进一步提高其稳定性,二者适宜添加量为m(KCl):m(K2FeO4)=1:1或m((NH4)2S2O8):m(K2FeO4)=1:1。(2)聚合物含量高是压裂返排液的显著特征。对K2FeO4氧化瓜胶反应过程进行热力学计算,ΔH为负值,说明该过程为放热反应;ΔG为负值,说明该反应过程可行。K2FeO4氧化瓜胶适宜工艺条件为:pH=12,温度为30℃,K2FeO4初始浓度为0.5 g/L;以m(KCl):m(K2FeO4)=1:1添加促进剂KCl,COD去除率为65.0%,溶液黏度从1.49 m Pa·s可降至1.04 m Pa·s,总有机碳量(TOC)去除率在77.0%。K2FeO4氧化瓜胶产生的产物主要包括半乳糖、甘露糖、醇类、酮类等分子量大小不一的碎片,重均分子量从2.38×106g/mol降至1752 g/mol和708 g/mol。对K2FeO4氧化瓜胶的反应机理进行研究,发现瓜胶分子结构中半乳糖和甘露糖的1-4键和1-6键易于进一步被断开,产生了相对分子量较小的碎片,且K2FeO4氧化瓜胶反应基本符合一级动力学模型。(3)压裂返排液处理过程包括:(1)静置及一次絮凝处理,当静置时间为24 h,温度为55℃,pH=10,助凝剂聚丙烯酰胺(PAM)为100 mg/L时,大粒径的固体颗粒和油滴分离效果较好;对絮凝剂进行筛选,当聚氯化铝(PAC)为0.4 g/L,时间为30 min,温度为25℃,pH=7时,溶液黏度从1.45 m Pa·s降低至1.28 m Pa·s,固体悬浮物去除率为60.2%(由93 mg/L降至39 mg/L),含油量去除率为88.7%(由1177 mg/L降至133mg/L),COD去除率为53.3%(由5190 mg/L降至2424 mg/L),此时对应的TOC去除率为59.0%(由648.72 mg/L降至265.98 mg/L),色度去除率为96%(由500度降至20度),浊度去除率为93.7%(由483.10 NTU降至30.20 NTU),絮状物的沉降速度较快。(2)氧化破乳处理,当K2FeO4为5 g/L,pH=10,反应时间为30 min,温度为40℃时,破乳效率为91.8%(含油量从133 mg/L降至10.9 mg/L),COD去除率为44.8%(由2424 mg/L降至1337 mg/L),此时对应的溶液黏度由1.28 m Pa·s降至1.10 m Pa·s,TOC去除率为54.0%。(3)二次絮凝处理,压裂返排液的COD降低至600 mg/L左右,TOC为41.58 mg/L,黏度为1.03 m Pa·s(接近于水的黏度),固体悬浮物为7 mg/L,含油量为5.2 mg/L,悬浮物粒径中值约为2μm。引入的K2FeO4通过絮凝作用,以Fe(III)形式几乎全部进入絮体,对溶液色度几乎没有影响,此时的浊度为2.26 NTU,符合污水回注的标准。(4)通过超声波或者外加电场强化与K2FeO4氧化过程的协同作用,不仅可以降低能耗与氧化剂成本,且可以进一步提高压裂返排液的氧化降解效率,有利于提高经济效益。当超声波外场强化时,溶液pH值为10,超声波频率为40 k Hz,输出功率为30%时,操作温度由原来氧化时的40℃降低到35℃,反应时间由30 min缩短至20 min,K2FeO4添加量降低40%(由5 g/L降至3 g/L),压裂返排液COD去除率仍可提高12.2%(由44.8%提高到57.0%),TOC去除率约提高了12.5%(由54.0%提高至66.5%),溶液黏度由1.28 m Pa·s降低至1.04 m Pa·s;外加电场强化时,在金属氧化物电极(DSA),pH=7,电解时间为30 min,电解电压为8 V的条件下,反应温度从40℃降低至20℃,压裂返排液COD去除率可提高20.2%(由44.8%提高至65.0%),TOC去除率约增大17.8%(由54.0%提高至71.8%),溶液黏度由1.28 m Pa·s降低至1.02 m Pa·s。(5)在某油田某采油厂进行氧化压裂返排液现场应用,压裂返排液处理量为16m3/h,处理温度为25℃,加入0.4 g/L絮凝剂聚氯化铝(PAC)、0.1 g/L助凝剂聚丙烯酰胺(PAM)和5 g/L氧化剂K2FeO4进行氧化处理,经絮凝-氧化-絮凝组合工艺处理后压裂返排液的COD≤950 mg/L,含油量≤10 mg/L,固体悬浮物含量≤7 mg/L,TOC≤60 mg/L,色度≤20度,浊度≤10 NTU,达到回注用水标准。对其经济成本分析发现,进行氧化剂复配或外场强化协同化学氧化是今后降低经济成本的有效方法。绿色、高能的K2FeO4氧化剂处理化学驱压裂返排液,可以保障油田压裂的生产过程平稳运行,降低反应成本,同时与所投加的油田化学药剂进行合理的配伍,有利于指导现场氧化处理剂的使用,对油田的生产具有重要的指导意义。