【摘 要】
:
随着工业4.0和智能制造的高速发展,磨削加工领域智能化程度越来越高,机器人砂带磨削由于其材料去除率高、成型质量稳定、加工精度高等优点正在逐步替代传统手工磨削,特别是对于像Inconel718高温合金之类难加工的材料。Inconel 718镍基高温合金因其优异的高温强度、力学性能和抗腐蚀性等被广泛应用于航空航天等领域。机器人磨削加工是非线性、强耦合的复杂过程,对材料去除率以及表面质量要求越来越高,如
论文部分内容阅读
随着工业4.0和智能制造的高速发展,磨削加工领域智能化程度越来越高,机器人砂带磨削由于其材料去除率高、成型质量稳定、加工精度高等优点正在逐步替代传统手工磨削,特别是对于像Inconel718高温合金之类难加工的材料。Inconel 718镍基高温合金因其优异的高温强度、力学性能和抗腐蚀性等被广泛应用于航空航天等领域。机器人磨削加工是非线性、强耦合的复杂过程,对材料去除率以及表面质量要求越来越高,如何建立精确磨削去除率模型成为智能化磨削的关键。本文围绕航空领域应用广泛的Inconel 718镍基高温合金,搭建了机器人智能柔性磨抛系统,并基于该平台开展了系列磨削工艺试验,研究了磨削参数对材料去除率的影响规律,磨削声音与材料去除率之间的相关性。通过对磨削声音信号的时域分析和频域分析,研究发现随着砂带磨削能力的降低以及磨削热的积累,信号幅值、平均能量、标准差、均方根以及峭度因子等特征信号随磨削持续进行整体逐渐减弱。磨削过程的噪音主要集中在低频段(频率低于9KHz),而稳定磨削阶段声音频率在9KHz到14KHz之间。对原始声音信号进行六层db3小波分解进一步提取相关特征,结果表明,七个信号分量D1(10000~20000Hz)、D2(5000~10000Hz)、D3(2500~5000Hz)、D4(1250~2500Hz)、D5(625~1250Hz)、D6(312.5~625Hz)、A6(0~312.5Hz)中,除A6和D4频段外其余信号与原始信号具有极大的相关性。基于上述分析,本文计算小波分解后D1、D2、D3、D5、D6五个分量的均方根值作为砂带磨削材料去除率预测的输入特征,建立了基于支持向量回归(SVR)算法、最佳修剪极限学习机(OP-ELM)算法、随机森林(RF)算法、XGBoost算法等机器学习算法的材料去除率预测模型,并使用平均绝对百分比误差(MAPE)对磨削去除率预测准确性进行评估,XGBoost、RF、OP-ELM、SVR模型对应的MAPE分别为4.37%、4.87%、7.47%、19.24%。结果显示本文提出的基于XGBoost模型在Inconel 718镍基高温合金机器人磨削预测材料去除率方面误差最小,效果最优。最后定量分析研究了磨削参数对工件表面性能的影响,主要包括粗糙度、硬度、残余应力以及表面烧伤等,发现机器人磨削加工是一个多参数耦合、高度非线性的复杂过程。砂带目数越大,工件表面粗糙度越好,砂带目数一定条件下,表面粗糙度与磨削力呈正相关,而与砂带转速无关;表面残余应力随着砂带目数的增加逐渐由拉应力转变为压应力,随着砂带速度的增加呈现先减小后增大的趋势;磨削时工件接触区域表面温度范围374℃~664℃,整体上与砂带转速呈正相关,而随着磨削力的增大先升高后降低,且工件表面温度与烧伤情况具有强相关性;磨削后会产生加工硬化现象,硬化层达125?m,硬化强度达到基体强度的125%。
其他文献
铝合金作为一种轻型合金材料,在车身某些部位广泛应用,是实现汽车轻量化的一个重要选择,激光焊接功率密度大、焊接效率高、自动化程度高,在汽车工业中正逐渐取代其他传统接合方式,汽车结构中不同部位使用不同材料,异种铝合金激光焊接容易产生缺陷,影响焊接接头质量,降低生产效率,而目前缺少有效的激光焊接量化熔深在线检测和表面缺陷在线检测手段。本文基于视觉方法,利用Phantom VEO 710s高速摄影相机搭建
板料挤压在成形有功能特征或变厚度特征零件上具有较大优势,随着汽车轻量化与节能减排的推广而备受关注。然而,在板料挤压成形过程中,存在局部载荷大、温度高等问题,从而影响成形零件的尺寸精度和模具寿命。有限元法作为成形温度场分析常用方法,为工艺优化和模具设计提供重要参考,其精度一直受关键传热学参数,如材料导热系数、对流换热系数和接触导热系数等的制约。在板料挤压成形中,传热学参数会随着接触应力和温度的变化而
镁合金是最轻的金属结构材料之一,具有广阔的应用前景。Mg-Al-Si系镁合金具有较好的流动性和低成本等优势,由于存在大量耐热性较好的Mg2Si相,该体系合金常被开发为高温下使用的耐热合金。但是该体系合金容易形成粗大的汉字状Mg2Si相,导致合金的力学性能下降。因此,采用合金化方法对Mg2Si相进行改性,进而提高合金的力学性能,是近年来研究的重要方向之一。本文以Mg-5Al-2Si合金为基体合金,通
钴基合金由于其优异的机械性能、耐腐蚀性及热稳定性,在航空、核电、水利及生物材料等方面获得了广泛的应用。特别是在工业应用中,其服役环境决定了钴基合金经常在长时间高温和高应力下工作。为了确保设备运行的安全性,对钴基合金高温下的组织和性能稳定性的预测和评估显得尤为重要,目前的相关报道较少。本文使用等离子弧方法在304不锈钢表面堆焊了三层总厚度为12 mm的Stellite 6钴基合金,并在焊后施加700
为便捷有效的描述板材在不同加载条件下表现出的复杂的各向异性行为与弥补传统的屈服模型的不足,有学者提出使用插值的方法构建屈服轨迹,该方法便捷高效、几何意义明确。本课题组对于构建插值型屈服模型也进行了一些研究,通过定义屈服轨迹的几何特性参数构建了贝塞尔插值型各向异性屈服轨迹及演化模型。但是该模型还不完善,因此本文在此基础上提出了一种改进的贝塞尔插值型各向异性屈服轨迹及演化模型。主要研究内容如下:通过研
铝合金焊接过程往往伴随着突出的氢气孔出现现象,严重影响着焊缝成形与产品性能。传统的气孔缺陷检测手段对实验设备有较高要求,且会对焊件造成不可逆的损伤。电弧光谱信号中携带了大量的能反映焊接动态过程的元素信息,从而可以与焊接氢气孔间建立起内在的联系。目前针对焊接氢气孔检测光谱研究方法的关键在于,要找到一种能够从大量光谱信息中提取有效特征且相对简单的方法。本文尝试探索出一套完整的铝合金交流GTAW焊接电弧
超高强度钢在模具制造、汽车运输、航海造船、航空航天、国防科工等领域有重要的应用。随着工业的快速发展以及节能、资源、环境等方面的要求,钢铁行业对低成本高性能的超高强度钢的开发与应用提出了更高的要求。组织细化是提高材料强韧性的有效方式之一,研究表明,通过循环热处理的方式可以使钢铁的组织有效地细化,同时提高钢铁材料强度和韧性。开展循环热处理对超高强度钢的影响规律研究对工程应用具有重要意义。本文针对原始奥
铝合金因其密度小、优良的比强度、良好的可加工性及耐蚀性成为机械制造、交通运输领域的主要应用材料。1060铝合金因其优良的可加工性而被加工成板材、棒材和挤压管等广泛应用于建筑外饰、汽车制造、家用器具制造等对成形性要求较高而对强度没有太高要求的领域,而热挤压工艺作为二次加工手段能够有效提高其成形性。现阶段国内对于热挤压1060铝合金的的研究较少,在合金的高温变形性能、机制和应用尚待研究,工业界在制定热
碳纤维复合材料优秀的吸能潜力已经吸引了众多国内外相关研究,并越来越多地被应用到航空航天、汽车、船舶等领域的吸能结构中。然而大量文献表明,碳纤维复合材料只有在渐进失效的情况下才能表现出高吸能特性,保证渐进失效的重要措施是引入触发元件,优秀的触发元件不仅可以带来渐进失效的失效模式,也可以进一步增加稳定压溃载荷水平,获得更高的吸能特性。此外,碳纤维复合材料复杂的损伤机理也为吸能研究带来困难。本文采用双倒
Stellite 6合金是一种钴基合金,以Co、Cr等为主要构成元素,具有良好耐高温和耐磨损性能,常作为熔覆材料用于表面增强。Stellite 6合金的焊态组织由树枝状的初生固溶体相和分布于树枝间的共晶相组成,其中初生相在宏观尺度上起主要贡献。研究Stellite 6合金的焊接凝固过程,尤其是初生相的凝固结晶过程,对于探究组织形成机理、指导工艺优化有重要意义。本文使用Co-Cr-W-C四元体系的伪