论文部分内容阅读
以太网以其低成本、高可靠性和安装维护简易等优点成为普遍采用的网络技术,随着用户对数据传输和接入带宽的需求越来越大,以太网逐渐经历了标准以太网、快速以太网、千兆以太网等各个阶段。以太网在电信化和数据中心的应用,更是推动了40 Gb/s和100Gb/s下一代以太网的快速商用。可是,当前已有的下一代以太网光发射机大多基于分布反馈激光器设计,复杂的工艺和昂贵的成本制约着其大规模应用。V型耦合腔可调谐半导体激光器不仅能够很好地解决这个问题,而且能够满足未来面临更大带宽需求时系统升级,动态组网的需要。本文主要研究用于下一代以太网的V型耦合腔可调谐激光器。首先,我们介绍了V型耦合腔可调谐激光器的基本结构和工作原理,并将该结构运用于1310 nm波段可调谐激光器的设计中,针对该波段改用AlGaInAs材料量子阱结构作为有源层,以提升温度稳定性,并重新设计了层状结构和波导结构。谐振腔参数也进行了优化,以获得较大的波长调谐范围和较高的边模抑制比,并在半波耦合器的设计中,加入两个延展区域用于优化附加损耗。接着,我们按照设计制作了实际器件,分析了波导内切和AlGaInAs材料量子阱侧向刻蚀现象出现的原因,并进行了改进,成功制作出性能优异的1310 nm波段V型耦合腔可调谐激光器。通过单电极电流热调谐,实现了22个100 GHz信道间隔的连续波长切换,边模抑制比超过30 dB。最后,我们设计了满足100GBASE-LR4规范的V型耦合腔可调谐激光器,并利用时域行波模型仿真了其静态和动态特性。通过采用电注入调谐模式,引入无源波导作为调谐区域,改进电极结构,缩短谐振腔腔长和减小腔长差等优化方式,取得了单个自由光谱范围内21个200 GHz信道间隔的连续波长切换,以及25 Gb/s直接强度调制性能,能够很好地满足下一代以太网对光发射机的需求。