【摘 要】
:
随着城市化进程,我国城市土地利用发生了巨大变化,城市水体及调蓄用地减少,城市生态系统遭到破坏;加上全球气候变暖导致极端降雨事件频发,日益频繁的雨洪灾害成为影响中国城市发展的重要问题。根据我国对雨洪调蓄和内涝风险研究现状分析,近年来我国倡导的海绵城市建设从流域尺度到城市微观尺度都一定程度上缓解了雨洪问题,然而对城市中观尺度的雨洪管控考虑较少;并且在面对极端降雨情景时,海绵城市体系从根本上难以解决城市
论文部分内容阅读
随着城市化进程,我国城市土地利用发生了巨大变化,城市水体及调蓄用地减少,城市生态系统遭到破坏;加上全球气候变暖导致极端降雨事件频发,日益频繁的雨洪灾害成为影响中国城市发展的重要问题。根据我国对雨洪调蓄和内涝风险研究现状分析,近年来我国倡导的海绵城市建设从流域尺度到城市微观尺度都一定程度上缓解了雨洪问题,然而对城市中观尺度的雨洪管控考虑较少;并且在面对极端降雨情景时,海绵城市体系从根本上难以解决城市高危险的内涝问题;同时传统的内涝风险往往只考虑单一的危险性,对城市造成的经济损失鲜有研究,也难以将风险评价结果作用于城市规划实践中。因此本文从城市片区尺度出发,基于危险-损失的内涝风险评估,来识别内涝管控的关键区域;并结合城市调蓄空间,利用多目标优化模型,尝试探讨了灰绿结合的城市雨洪调蓄系统构建方法。本文选取长沙望城坡片区为研究区域,对研究区的地理水文、用地建设情况和排水系统进行调查和数据分析,并通过水文模型进行20年降雨情景雨洪模拟,根据模拟结果结合不同用地类型内涝损失率及用地单元经济损失情况,建立危险-损失的风险矩阵来评估内涝风险。通过分析研究区的调蓄空间,建立多目标优化模型得到灰色调蓄设计最优解;再结合灰色调蓄后的内涝风险与调蓄空间位置对比,得到解决剩余内涝的绿色调蓄设计布局;最终进行城市雨洪调蓄分级,形成灰绿结合的调蓄系统规划。研究发现,通过情景模拟的内涝危险性评价,发现了因排水管网溢流和城市不透水面地表径流而产生的两种内涝积水问题。耦合用地内涝危险性和损失程度,更能综合的反应内涝严重的关键区域,不同用地的功能属性和同类用地的不同资产性质都对内涝风险有着一定的影响。通过多目标优化模型,得到具体的调蓄池建设位置和容积规模,设计方案能够解决60%-80%的内涝问题,是解决排水系统溢流的重要调蓄方式。优化后发现未解决的内涝一部分是由于溢流点附近缺少满足调蓄池建设的调蓄空间来消纳积水,一部分是由城市地表径流汇集至低洼处产生的积水,因此将灰色调蓄优化后的内涝风险与对应的调蓄空间结合,进行绿色调蓄控制,可以更好的解决上述内涝问题。从城市规划角度,充分挖掘城市调蓄能力,构建针对内涝风险的城市雨洪调蓄系统,为解决城市内涝问题提出新思路。本文的重点在于探索城市雨洪调蓄的优化方法,了解雨洪内涝在城市中的危险和经济损失特征,从而调整调蓄规划的空间布局,充分利用城市调蓄空间,对城市内涝进行精准管控,促进城市可持续发展。
其他文献
环境规制是协同推进经济高质量发展和生态环境高水平保护的关键。利用2012—2020年长江经济带沿线11省市数据,采用SBM模型、Malmquist-Luenberger指数、门限回归模型、工具变量法等模型方法,分析环境规制对长江经济带制造业绿色全要素生产率的影响。研究发现,命令控制型和市场激励型环境规制能够显著提升长江经济带制造业绿色全要素生产率,绿色技术创新和产业结构升级发挥中介作用;环境规制对
焊接残余应力与变形预测已成为许多制造工艺中的一个重要问题。在焊接冷却过程中,焊缝金属收缩受到母材金属的限制,在焊缝处往往会累积较大的拉伸应力和变形。桥梁结构全焊接整体包括T型焊接接头、十字焊接接头和箱型梁等,不同结构的三维应力和变形分析是一个复杂的问题。本文针对低合金结构钢Q370q E的不同焊接结构,采用有限元模拟软件SYSWELD,对不同焊接接头的温度场,应力场和变形场进行分析,论文主要研究内
随着社会发展,人们的生活条件越来越好,为了出行方便越来越多的人购买汽车,而汽车事故如碰撞起火等安全性问题也随之增加,因此便要求研究人员要重点关注汽车碰撞安全问题。与此同时,环境污染和能源短缺等问题也越来越严重,而轻量化是减少消耗和降低排放的重要手段,汽车重量的减小能够有效的保护能源缓解能源危机并同时减少环境污染,对于可持续发展具有重要意义。使用具有优良吸能性能且密度较小的新型材料来设计一些新型结构
300M钢具有高强度、高断裂韧性、良好的抗疲劳性能等优点,在飞机起落架等大型航空关键承力结构件上应用十分广泛。大型锻件的成型过程十分复杂,采用数值模拟仿真技术能有效提高成形效率、优化工艺流程和模具结构,并改善锻件质量。而数值模拟仿真结果的可靠性在很大程度上取决于热变形边界条件的精确度,因而确定300M钢热锻成形边界条件并研究其影响因素具有重要意义。本文首先通过热传导反问题求解方法确定300M表面换
高表面积和量子效应赋予纳米材料的独特性能使其在电学、磁学、光学、传感器及催化等领域具有广阔的前景,目前功能性纳米材料的合成主要采用自组装技术;π共轭体系由于具有可设计的分子结构以及优异的光电性能从而在自组装方向中受到了广泛的关注,做为一种优异的π共轭体系,苝酰亚胺衍生物(PBI)的强π-π堆积相互作用使其可以通过自组装形成各种尺寸和形貌的纳米材料,而聚集体的形貌结构决定了其光电性能,因此通过改变分
5083、5A06等传统Al-Mg系合金具有密度低、耐蚀性和焊接性好等优点,但作为关键结构件使用时其强度偏低。镁在铝中具有良好的固溶强化效果,增加Mg含量能显著提高Al-Mg系合金的强度。课题组前期的研究表明,采用优化工艺制备的5A12(镁含量为9.2wt.%)铝合金薄板室温强度高达648MPa,但在常规凝固条件下大量过饱和Mg原子使晶界β-Al3Mg2偏析加重,由此引发的时效软化及耐蚀性下降成为
超级电容器因其质轻,高的功率密度和优秀的循环稳定性而受到了广泛的关注。众所周知,多孔碳材料(NPCs)由于其大的比表面积、优良的循环稳定性和导电性,目前是制造超级电容器电极的主选材料。但其较低的电容量和能量密度限制了其发展,可通过杂原子掺杂来提高其电化学性能。本文主要使用不同的含氮、硫的前驱体,通过化学合成、溶液浇注以及高温碳化等方法制备了三种材料:ZIF-8基氮掺杂的多孔碳材料(CM-NPCs)
三维有序多孔碳材料由于原料来源广泛,比表面积大及其物理化学性质稳定等诸多优点,因此在超级电容器电极材料方面具备广泛的应用前景。沥青作为石油加工过程中的副产物,价格便宜且残碳率高,将其作为高性能超级电容器电极材料的优质前驱体,大大增加了沥青的附加利用价值。然而单纯的碳材料仅仅利用双电子层原理储存能量导致其比电容不高,进而限制了能量密度的提升。在碳材料中引入氮元素能够有效改善电极材料与电解液之间的润湿
近几年来,随着科学技术的发展,生物特征识别技术成为广受关注的研究热点,其中基于人脸的生物识别技术因其特殊性被应用于各种场景中,但由于与人脸相关的视频和照片很容易被他人伪造或恶意盗取,人脸识别系统面临着一系列安全问题,人脸活体检测技术应运而生。人脸活体检测主要是用来判别获取的人脸面部是活体还是非活体,通过这种技术来增强系统的安全性。针对人脸活体检测存在易受外部环境影响、欺骗种类较多、检测模式单一等问
随着越来越多复杂的人工智能系统不断涌现,钢铁行业在扩大生产规模的同时,也迫切需要改进自身的生产工艺。工业4.0浪潮兴起带来了宝贵的机遇,钢铁行业努力抓住机遇,全力打造全智能化生产的钢铁厂。而钢铁厂一般通过人工检测的方法识别钢板表面喷码的方式工作效率低、危险性高、漏检误检高、成本高等不利因素,这给检测和识别带来了困难,难以满足全智能化生产的要求。因此,开发一套基于机器视觉方法的智能标号系统不仅能提高