CSLST微波介质陶瓷流延成型工艺及其性能研究

来源 :景德镇陶瓷学院 | 被引量 : 4次 | 上传用户:yichunyang
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着信息通讯技术的快速发展,将微波介质陶瓷材料应用于低温共烧陶瓷(Low Temperature Co-fired Ceramics,简称LTCC)已成为当今的发展重点和方向。本文以添加了烧结助剂B2O3-CuO-Li2CO3(BCL)玻璃粉料的(Ca18/i9Sri/i9)o.2(Li0.5Sm0.5)0.8TiO3 (CSLST)高介电常数微波介质陶瓷粉体为基体粉料,研究其水基流延成型工艺与有机流延成型工艺,获得了可实用化的CSLST系低温共烧微波介质陶瓷材料。(1)以苯丙乳液为粘结剂,聚乙烯吡咯烷酮(PVP)为分散剂,丙三醇为增塑剂,去离子水为分散介质,对添加烧结助剂BCL玻璃的CSLST微波介质陶瓷粉体(CSLST+BCL)进行水基流延成型工艺的研究。通过研究浆料的pH值、固含量以及各种添加剂含量对浆料分散性以及流变性能的影响,获得了适合流延的浆料配方:浆料pH=10,陶瓷粉体固含量60.5-65.6wt%,分散剂0.8wt%,粘结剂10-14wt%,增塑剂与粘结剂比例R为0.25时,该浆料适合于流延成型。通过采用除泡剂正丁醇和真空搅拌脱泡机共用的方法有效排除流延浆料中的气泡,在流延机上流延后在40-60℃下干燥可制备表面光滑、平整、均匀、无裂纹的流延膜片。(2)以二甲苯、正丁醇混合溶液作为分散溶剂,自制的BM-2为粘结剂,聚乙二醇PEG为增塑剂对CSLST+BCL陶瓷粉体进行有机流延成型工艺的研究。通过分散溶剂的比例、固相含量对料浆流变性能的影响,优化流延浆料配方,获得了可低温烧结且致密度高的CSLST微波介质陶瓷基片。研究表明:当陶瓷粉体固含量55wt%,分散溶剂二甲苯、正丁醇的比例为1:1,粘结剂为8-11%,增塑剂为3-4%。该浆料具有适合于流延成型的典型剪切变稀行为的流体特征。经流延成型干燥后可制备光滑平整无裂纹的流延膜片。(3)通过流延成型工艺制备CSLST+BCL微波介质陶瓷的流延膜片,通过热重-差热分析,确定流延膜片合理的排胶和烧结制度,通过测量烧结后膜片的密度判断其烧结特性。实验结果表明:水基流延膜片叠层后在900℃下烧结具有良好的微波介电性能:介电常数εr=59.2,品质因数Q×f=1044GHz,谐振频率温度系数τf=18.39×10-6/℃。有机流延膜片叠层后在900℃下烧结也具有较佳的微波介电性能:εr= 54.2, Q×f=1249 GHz, τf= 18.42×10-6/℃。(4)通过研究两种流延膜片与添加不同含量CSLST+BCL陶瓷粉体的银浆的共烧行为结果发现:膜片与含5%CSLST+BCL基体粉料的银电极在900℃共烧后具有较好的结合性。对CSLST微波介质陶瓷的两种流延成型工艺的研究,得出了合适的流延配方,微波介电性能优良,且能与银电极有良好的结合性,可满足LTCC技术要求。
其他文献
在能源日益紧缺的当下,研究开发新能源已刻不容缓,太阳能因其众多优点,在新能源领域越来越受到重视,针对太阳能电池的研究与利用也在紧锣密鼓地开展着。而寻找高稳定性和高光电转
经过30余年的发展,开发区建设已经成为我国经济发展的重要载体,为社会进步做出了巨大的贡献,也成为城市发展的一个新模式。然而,伴随着开发热带来经济效益的同时,土地资源浪费的问
目前多数图像处理算法都是针对特定的图像提出的,几乎没有一种算法对所有图像具有普遍的适应性。同时,在国内兽医学研究领域中对动物骨髓病理图像的分析仍属空白,故本论文针对从