论文部分内容阅读
调焦是一个成像光学系统必须要做的工作,在科技发展的今天,我们对光学系统的调焦不再通过目视比较而确定,而是通过数字成像分析。目前的调焦方式有很多种,有对比度法、相位法、测距法等。但不管哪种调焦方式,快速、高精度而又稳定对焦是光学工作者一直追求的目标。目前的主流的调焦技术都采用两种调焦方法—图像调焦和测距调焦。图像调焦法通过像质反馈信息可以提高目标的定位精度,但是也存在对焦速度慢,物体与背景的对比度低时容易产生离焦问题。而测距调焦系统虽然直接反馈调焦系统的调节位移量,达到很快的对焦速度,但是由于没有像质反馈信息,无法根据像质自我矫正,所以其调焦精度比较低。针对大地观测反射望远镜的结构特点及光学特性,望远镜常用的测距调焦的方法,但是简单的测距调焦法无法满足高精度和高速对焦的要求,本文提出了一种改进的测距调焦方式。通过精确仿真计算得到正焦位置与目标距离的关系,同时在闭环调焦平台中针对实时调焦存在的延迟,提出了速度或者位移补偿方法,既提高了调焦系统的对焦精度,也解决了动态调焦中因滞后造成的离焦问题。首先,本文对目前的不同种类的望远镜光学系统作了简要的介绍,详细介绍了影响望远镜调焦系统的调焦误差的内部及外部因素,对有限远物点产生的像差进行分析,指出了望远镜存在一定的焦深,重点研究卡塞格林望远镜的结构、光路以及对焦误差来源。其次,实现了对反射式望远镜的ZEMAX仿真分析。要实现高精度测距调焦,必须找到正确的正焦搜索方向,这就要求我们知道如何设计望远镜,以及如何分析成像质量的好坏,借助ZEMAX软件,可以很快找到正焦位置,实现了对正焦公式的修正。利用MATLAB仿真,采用了几何光学的分析手段,提出了针对离轴望远镜的调焦方法—离轴调焦法最后,我们设计了自动调焦系统的硬件平台,分析了自动调焦系统存在调焦滞后的原因,提出了对测距调焦系统的延迟补偿方法。并测得了电机的静态误差,通过闭环试验验证了补偿效果。