论文部分内容阅读
现有的静电探针理论无法实现对等离子体的定量准确性测量,其主要原因是等离子体鞘层结构尚不完全清楚。现有的等离子体理论以及鞘层理论在描述鞘层边界附近区域方面都具有一定的局限性:等离子体和鞘层在边界处的电场强度不连续。为了解决等离子体与鞘层在边界处电场不连续的问题,部分学者提出在等离子体和鞘层之间引入过渡区来平滑地连接二者,而其他学者则认为鞘层与等离子体的边界电场应该定义为TeD。鞘层边界问题至今悬而未决的主要原因就是准确的鞘层诊断实验数据不足。为此,本文考虑从等离子体鞘层结构的发射探针诊断入手展开研究,为解决鞘层结构问题并进一步解决静电探针诊断的定量准确性问题建立基础。诊断鞘层结构的难点在于鞘层边界附近区域电势分布的准确测量,因为这一区域的电势变化通常很小(~1 V),因此所采用的电势测量技术需要拥有很高的测量精度(~0.1 V),而现有的发射探针诊断技术均不能达到这样的测量精度。为此,本文首先对空间电势的发射探针诊断技术进行研究,提出了一种改进的发射探针零发射极限拐点电势法,即通过线性外推发射探针I-V特性曲线的拐点电势(Vip)与探针加热电流(Iht)的曲线至电子发射电流(Iemis,)为零处,所获得的电势即为准确的等离子体空间电位。双极板空间轴线的真空电势分布测量实验显示该方法对于空间电势的测量精度能够达到0.1 V,为准确测量鞘层电势分布提供了保证。由于改进的零发射极限拐点电势法自身繁琐的操作步骤,手动执行该方法进行等离子体鞘层电势分布测量,往往会因为工作量大、测量时间久而难以实现。因此,基于改进的零发射极限拐点电势法,本文自主研发了自动发射探针诊断装置。该装置能够自动给发射探针施加和调节加热电流和探针偏压,自动获取并分析实验数据,快速给出测量结果,显著提高了利用发射探针测量空间电势的工作效率。利用自动发射探针诊断装置进行负阴极鞘层电势分布测量,结合相关的理论对实验数据进行拟合分析,结果表明:鞘层与预鞘层之间存在一个过渡区域,鞘层中的电势分布满足Child定律鞘层电势分布表达式,预鞘层中的电势分布满足相应的预鞘层电势分布表达式,过渡区与预鞘层边界处的电场强度满足过渡区鞘层理论的鞘层边界条件,证实了鞘层过渡区理论关于鞘层边界电场的正确性。此外,本文利用发射探针对较高气压环境中的空间电势测量进行探索。较高气压环境中的真空电势测量以及微波ECR氩气等离子体空间电位测量实验表明:改进的零发射极限拐点电势法能够可靠测量气压低于350 Pa的空间电势。在高于350 Pa的环境中,由于真空室中氧含量较多,钨丝发射探针极易烧断,从而无法完成有效的空间电势测量。发射探针的较高气压空间电势可靠测量实验为今后的碰撞鞘层结构研究建立了基础。