【摘 要】
:
空间天气研究涵盖太阳日冕、行星际、磁层、电离层、中高层大气等物理性质不同的空间区域,空间灾害性事件的日冕-行星际过程是空间天气研究的主要内容之一,而基于磁流体力学(MHD)方程组的数值模型是研究该内容的有力工具,可以为近地空间天气变化研究提供科学输入。本文首先发展了日冕-行星际CESE模式(SIP-CESE Model),然后应用该模式模拟研究了1997年5月12日CME事件和1998年11月4-
【机 构】
:
中国科学院研究生院(空间科学与应用研究中心)
【出 处】
:
中国科学院大学(中国科学院国家空间科学中心)
论文部分内容阅读
空间天气研究涵盖太阳日冕、行星际、磁层、电离层、中高层大气等物理性质不同的空间区域,空间灾害性事件的日冕-行星际过程是空间天气研究的主要内容之一,而基于磁流体力学(MHD)方程组的数值模型是研究该内容的有力工具,可以为近地空间天气变化研究提供科学输入。本文首先发展了日冕-行星际CESE模式(SIP-CESE Model),然后应用该模式模拟研究了1997年5月12日CME事件和1998年11月4-5日的三个续发CMEs事件在日冕-行星际空间的三维传播与演化过程,其中的三维背景太阳风采用磁场的观测数据做为初始输入通过时间松弛法求解3D时变MHD方程得到,行星际扰动参数尽量由观测数据决定。针对太阳风的球形计算区域,把整个空间剖分成非重叠的五面体网格结构,在此网格基础上,建立了基于CESE格式的日冕-行星际耦合的MHD模式(SIP-CESE MHD Model),该模式可以模拟从1Rs到近地轨道(215Rs)附近的三维背景太阳风。作为该格式的验证,分别采用多极磁场和观测的太阳表面磁场输入通过时间松弛法求解3D MHD方程组模拟了两个日冕定态解。证明该模式具有以下优点:它将时间和空间统一起来同等对待;在给出网格点物理量值的同时也给出了物理量的偏导数;可以满意地求解间断流场,具有较高的分辨率;构造比较简单,除了简单的Taylor展开之外,没有采用其他的数值方法。接着,用新发展的日冕-行星际CESE MHD模式模拟日地联系事件-1997年5月12日CME事件。和该事件的其它数值模拟相比,本文数值格式的主要特征是:(1)通过输入观测的光球磁场,由3D时变数值MHD模型得到背景太阳风;(2)瞬变扰动是从太阳表面触发,添加扰动的位置、角宽度和实际观测数据一致。模拟结果和WIND飞船观测数据比较相对比较满意。证明此数值模式可以基本模拟三维真实CME在日冕-行星际空间的传播和演化过程。Burlaga et al. (2002)指出大约仅有三分之一的对地方向的太阳物质抛射在地球附近形成磁云(MC);大部分喷发形成复杂抛射或者多重MCs(在地球附近,仍然可以区分不同的MCs)。同一活动区的多个续发CMEs提供了研究对地过程中多个CMEs相互作用的很好的例子。用新发展的日冕-行星际CESEMHD模式模拟了1998年11月4日至5日起源于8375活动区的3个连续日冕物质抛射在行星际空间的传播和相互作用并最终形成复杂抛射体的日地传输过程。三维背景太阳风用Parker一维太阳风解和太阳光球磁场观测数据作为输入得到。该模拟中,三次事件的触发位置和实际观测位置一致,CME的扰动参数,如速度、方向和角宽度由SOHO/LASCO的观测数据并结合锥模型来确定。模拟结果可以重现和解释飞船观测的复杂抛射的一些一般特征。
其他文献
日冕物质抛射(CME)是近地空间环境的主要扰动源,研究CME在日球层内的远距离传播演化过程对认识行星际空间天气现象和提高空间天气预报能力具有重要的意义。本文主要结合遥感成像和多点太阳风就地观测分析多个快速CME/激波在日地空间和1个天文单位(au)以外行星际空间的运动学特征和相关的地磁效应。首先以2005年5月6日和13日爆发的两个快速CME为例,分别使用渐变圆柱壳(Graduated cylin
电离层真空紫外(10nm-200nm)气辉辐射是中高层大气物理过程的一个重要能量源,主要是由太阳光电离激发以及光电子与高层大气碰撞电离激发过程而产生,对大气真空紫外气辉辐射的测量是地球电离层和热层天基遥感探测的重要手段,从中可以获得电离层F层电子密度剖面、O+离子密度剖面以及电离层氧氮比O/N2等物理参量的空间分布信息。由于低热层中分子粒子的吸收作用,导致光谱波长在200nm以下的气辉瑞利散射无法
引力波是爱因斯坦广义相对论最重要的预言,是当代物理学研究的前沿领域。空间引力波探测可以摆脱地表震动和引力梯度噪声的影响,以及干涉臂长的限制,探测蕴涵着丰富物理和天文信息的中低频引力波。本文基于“太极”空间引力波探测计划,重点研究了日心编队飞行轨道的优化设计与分析问题。主要研究内容包括:在编队构型优化方面,空间引力波探测任务动力学模型复杂,任务周期长,导致编队优化效率较低。针对此问题,构造了考虑太阳
日球层电流片是慢太阳风中的重要结构,对于空间天气预测有着非常重要的意义。日球层电流片偶尔会引起行星际磁场的极性方向突然发生改变,而行星际磁场极性改变会接连产生一系列的空间天气事件。因此,研究日球层电流片的传播规律有着重要的科学意义及应用价值。本文利用多个航天器联合观测的方法,结合事例分析,统计研究以及相关模型结果,对慢太阳风中日球层电流片的传播规律进行了深入细致的研究。1,日球层电流片的传播研究日
在本论文中,我们选择了我国扇区三个具有代表性的台站,即中纬沿海地区长春站(125.3°E,43.8°N;磁纬33.6°N),几乎处于同一地磁纬度的中纬内陆地区乌鲁木齐站(87.6°E,43.7°N;磁纬33.4°N)以及低纬沿海地区海南站(109.1°E,19.5°N;磁纬9.4°N),通过电离层测高仪探测的三个台站的扩展F(Spread-F)数据,比较研究了太阳活动高、低年以及整个太阳活动周我国
磁层顶既是磁层和太阳风的分界面,同时也控制着太阳风与磁层之间质量、动量和能量的输运,进而直接或间接的影响磁层的结构以及其中各种物理现象的发生。磁层中的各种爆发现象会对各种地基、天基系统产生影响甚至造成不可恢复的破坏。对磁层顶的研究有助于提高人们对空间灾害性天气的预警以减少对人类活动的影响。本文主要结合THEMIS卫星的观测数据对磁层顶的小尺度结构以及磁层顶的运动特征进行分析,主要研究内容及结论总结
中间层顶区域(85100 km)是地球低层大气和高层大气之间动量、热量、大气化学物质交换的重要区域,大气的动力学输送机制例如平流输送、重力波输送、大气潮汐输送、湍流混合输送对地球大气不同圈层之间的耦合过程关系紧密,可见研究中间层顶区域的垂直动力学输送机制对于理解上述过程有很大的意义。相比研究工作开展较多的平流输送和湍流混合输送机制,大气重力波活动产生的垂直输送机制的研究工作开展很少,但它对于大气动
随着移动通信技术的发展,5G的部署和实施正在逐步进行,5G相关的安全性问题成为研究人员和广大用户的关注焦点。但是由于5G仿真网络并未实现,目前通信系统的安全性研究仍旧以LTE网络的仿真测试为主,针对5G网络进行安全性分析的研究较少。而作为系统安全基础的认证和密钥协商协议,其安全性是5G安全的核心问题,并且存在工具可以对其进行安全性分析。本文借助TAMARIN证明程序对EAP-AKA’协议进行建模分
采用理想磁流体力学方程组(MHD)作为太阳大气动力学过程的控制方程组,定性数值模拟日冕物质抛射(CME)现象。首先,根据不同形式MHD方程组的特点,发展与之相适应的数值算法。首次推广了无振荡、无自由参数格式(NND),把它应用于守恒形式的MHD方程组。主要做了两个方面的工作,第一,为了降低由磁场散度数值上不为零造成的Lorentz力误差,把磁场分解成两部分,一部分为势场,不随时间变化,另一部分为非
重力波和臭氧是中高层大气中研究的两大热门课题,本文分别从理论模式和仪器研制两方面对它们进行了研究。在第一部分的工作中,利用全隐欧拉格式和全球热层-电离层-中间层-电动力学环流耦合模式(TIME-GCM),对重力波的非线性传播及其在传播过程中对中高层大气中氧族和氢族成分和与之密切相关的OH气辉辐射的影响进行了数值模拟,结果表明,从对流层向上传播的重力波经历了产生、发展、饱和、对流产生直至破碎的非线性