二苯基甲烷二异氰酸酯(MDI)的热危险性分析

来源 :中国石油大学(华东) | 被引量 : 0次 | 上传用户:zml19881209
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
二苯基甲烷二异氰酸酯(MDI)是生产聚氨酯最重要的原料之一。由于其强反应性和高毒性,MDI与各类酸碱盐、氧化剂、醇和金属合金共存时会快速反应产生热量或者形成高压。鉴于国内发生过的MDI爆炸事故,造成严重的伤亡后果及巨大的经济损失,选取MDI作为研究对象,采用实验和模拟的方法研究MDI的热危险性。选取差式扫描量热仪(DSC)和热重分析仪(TG)对纯MDI和杂质与MDI混合物进行热分解特性实验研究。纯MDI的DSC实验是分别在4、6、8和10℃/min的升温速率和氮气氛围下进行,气氛流量为50 ml/min。随着升温速率β的增大,起始反应温度T0、反应速率最大处温度Tm、反应终止温度Tend和热焓ΔH逐渐升高。采用Kissinger法和Ozawa法测得MDI的表观活化能分别为19.0735 k J/mol和22.733 k J/mol。TG研究了MDI在5℃/min和8℃/min的升温速率下的失重情况。随着温度的升高,MDI的热分解分为三个阶段,160~250℃为第一阶段的热分解,该阶段MDI损失约55~60%的质量;420~510℃为第二阶段的热分解,该阶段MDI损失的质量比较少,大约10%左右。550~630℃为第三阶段的热分解,该阶段约损失30~35%的质量。根据MDI在生产、运输、储存和使用等情况下的环境,利用DSC研究了MDI在与水、酸和碱混合后的热分解情况。添加不同质量的水且在不同升温速率下的实验表明,添加水后提高了MDI的初始反应温度及引发反应所需的能量,但反应过程会产生大量CO2,不及时排出会造成超压爆炸危险;硝酸和MDI混合的DSC实验表明随着硝酸的量增加和p H值的增大,各项热分解特性参数均逐渐升高,硝酸催化MDI发生的反应更加剧烈,反应后产生大量的CO2;氢氧化钠和MDI混合的DSC实验表明,随着氢氧化钠的量增加和p H值的增大,各项热分解特性参数均逐渐升高,氢氧化钠催化MDI发生的反应更加剧烈,反应后产生大量的CO2。MDI的Gaussian模拟选取密度泛函方法(DFT-B3LYP),在6-311++G(D)基组条件下对MDI分子进行结构优化、频率计算及能量计算,得到MDI的稳定构型及单点能等数据,单点能E为-2.2×106 k J/mol。根据键离解能推断分子断键的所有可能情况,并对MDI在热解过程中断键后的自由基进行优化频率计算,通过键离解能的计算和对比找出其热分解断键的路径,最终预测MDI热分解的最可能路径。通过模拟结果进一步计算得到MDI的理论活化能Ea’为34.6566 k J/mol。通过对MDI的热稳定性进行实验和分解机理模拟研究,分析了MDI的热分解性质,研究结果对其在生产、运输、使用和储存过程中可提供安全指导措施。
其他文献
化学救援应急指挥车是配备多种指控设备和信息处理设备的指挥车辆,是集调度、应急、通信、信息采集与传输等功能于一体的指挥方舱。在化学事件突发背景下,应急指挥车能否第一时间赶赴现场,实施有效指挥,对稳控局面,减少恐慌,避免伤亡,减轻事故后果,具有极其重要的作用。因此,根据化学应急救援任务特点和现场环境,深入研究应急指挥车的机动性能和信息系统建设,具有重要意义。本文首先结合应急指挥车的功能需求和实际用途,
近年来,水治理和水安全保障已成为当前最重要的环境问题之一。污水处理的常用方法主要有:物理法,生物法和化学法。化学方法中的催化高级氧化法是一种深度处理有机废水的常用方法。该方法中,催化剂的性能是一个核心问题。由于传统的非均相催化剂催化活性和选择性较差,因此还存在开发新型负载型催化剂的需求。本论文采用一种简单的、无载气的气相沉积(VD)法制备负载型Fe基催化剂(Fe/UiO-66、Fe/MIL-101
为了提升传统负载型金属催化剂的催化性能,本论文对催化剂的表面进行了修饰处理。通过在Pt/Al2O3表面引入无机氧化物修饰层,利用物理作用来达到阻碍金属颗粒迁移的效果,有效防止高温团聚,提高催化剂的稳定性。此外,在覆盖无机氧化物修饰层前,分别引入咪唑烷基脲、1-己基-3-甲基咪唑鎓溴化物、1-(2-均三甲苯磺酰基)咪唑和2-巯基-5-硝基苯并咪唑等咪唑类有机物,可以有效地保护金属颗粒,使催化剂的暴露
癌症是危害人类生命健康的重大疾病,药物治疗(化疗)是治疗癌症的重要手段之一,抗肿瘤药物的毒副作用是影响临床化疗效果的主要因素。抗肿瘤药物在肿瘤部位定位递送和精确释放,是提高抗肿瘤药物疗效、降低毒副作用的重要方式,也是目前抗肿瘤药物研发的重要内容。然而,如何实时在线精准示踪抗癌药物的递送过程、靶向释药过程以及生物分布与代谢是迫切需要分析与解决的难点和核心问题。中国科学院兰州化学物理研究所研究员
期刊
煤、石油、天然气等传统化石能源的过度开发与利用,使人类社会出现了能源枯竭、环境污染、全球变暖等诸多严峻的社会问题。因此,大力发展新型可再生资源对实现可持续发展具有重要意义,其中太阳能因其储量丰富且易于实现产业化和商业化而得到了广泛的应用。染料敏化太阳能电池(DSSCs)作为一种极具潜力的新型光电转化装置,自出现以来便受到了广泛的关注。而染料敏化剂作为DSSCs光电转化的关键材料,在DSSCs研究工
氧化石墨烯(Graphene oxide,GO),作为一种新型的二维纳米材料,具有超薄的片层结构、良好的亲水性能以及优异的机械性能等特点,在膜分离领域具有巨大的潜力,尤其在水处理领域,具有很大的研究空间。本论文通过在GO层间引入有序孔材料以克服其层间距不均一且遇水膨胀的问题,制备了两种基于氧化石墨烯的复合膜,并对这些膜材料进行了一系列的性能表征:X-射线粉末衍射、扫描电镜、透射电镜、原子力显微镜、
金属-有机框架物(MOFs)和共轭微孔聚合物(CMPs)均具有永久孔径、高比表面积、可设计和易修饰的特点。不同的是MOFs含有配位的金属离子和可解析的晶态结构,CMPs则是由共价键构成的具有大π-共轭骨架的无定型材料。这两类材料各具优势,如何开发更具特色和功能的新型MOFs和CMPs材料已经成为一个研究热点。共轭噻吩类化合物具有出色的光学和电学性质,将噻吩功能基团引入结构设计中有望获得新型MOFs
有机反应应用于高分子合成是高分子化学的重要的研究方向之一,其中,碳-碳键生成的有机反应为高分子合成方法的拓展提供了重要途径。Barbier反应作为一类经典的碳-碳键生成反应,在有机合成领域应用十分广泛,但其在高分子合成领域的应用还鲜有报道。此外,Barbier缩聚反应的反应底物种类及参与反应的金属种类研究较少,还需要进一步探究。材料在加工或者使用过程中会产生不易被发现的微裂纹,微裂纹的存在可能会降
在新能源逐渐取代传统能源的时代,锂离子电池作为一种新能源发展起来,被广泛应用于我们的生活中,是我们日常生活中不可缺少的一部分。但是锂电池在低温下的使用,出现了一系列的问题,比如,其容量衰减严重、使用寿命缩短等。解决锂电池的低温性能,使其在较为恶劣环境下仍能正常使用,是当前研究的重点。电解液被称之为电池的血液,在锂电池的电化学性能中起着至关重要的作用,由于电解液的粘度在低温下不断增加并且电导率降低,
5-羟基-γ-癸内酯是本课题研究过程中发现的一种新颖物质。结构相近的γ-癸内酯现已被美国FDA认定为食品香料添加剂,应用广泛;同时部分内酯类物质作为菌落群体感应的信号分子的研究也十分广泛。但关于5-羟基-γ-癸内酯的研究较少,本文主要围绕5-羟基-γ-癸内酯的发现及其代谢途径展开研究。利用Bacillus sp. 1s-1发酵产生5-羟基-γ-癸内酯,通过化学反应合成内酯验证并绘制了标准曲线,对产