论文部分内容阅读
研究目的:通过FA-PAMAM靶向系统联合BAS信号放大系统构建荧光探针及磁分离探针,用于SKOV3细胞检测和分离。研究方法:采用活泼酯法合成SA-QDs及SA-MNPs,并通过琼脂糖凝胶电泳和马尔文激光粒度仪表征分析偶联SA前后QDs和MNPs的水化粒径和zeta电位,验证偶联是否成功。并用同样方法以PAMAM为载体制备生物素化FA,通过傅里叶红外光谱仪(Fourier transform infrared spectrometer,FTIR Spectrometer)检测是否有新化学键生成来证明复合物的成功制备。利用SA-QDs与生物素化FA高特异性结合的性质,实现FA为靶向分子的SA-QDs荧光探针特异性标记FR高表达SKOV3细胞,荧光倒置显微镜下观察分析FA-PAMAM靶向系统联合BAS信号放大系统的荧光增强作用,并以FR低表达的A549细胞为对照组,验证该探针的靶向特异性。在添加背景细胞的PBS体系中加入预染色的SKOV3细胞,构建磁信号放大方式富集分离循环肿瘤细胞(circulating tumor cells,CTCs)模型。首先加入生物素化FA与SKOV3细胞孵育一定时间,再投入SA修饰的MNPs,在外加1.0 T磁场的作用下分离SKOV3细胞。为获得较高的捕获率,对分离过程中的反应添加量、反应时间及磁分离时间进行了优化。通过MTT实验检测该捕获体系对细胞的毒性作用,并将捕获的SKOV3细胞重新放入CO2培养箱中培养,检测SKOV3细胞是否存在损伤及观察细胞贴壁情况,证明该捕获系统分离得到的细胞可用于下一步研究。结果:1、马尔文激光粒度仪测定结果显示,本研究所用的QDs(17.86 nm)及MNPs(24.48 nm)粒径分布较集中,具有优良的单分散性,偶联SA后,SA-QDs(29.47 nm)及SA-MNPs(30.33 nm)水化直径较偶联前均增加;zeta电位测定结果表明,在超纯水中的QDs及MNPs表面均呈负电位,分别为-(58.10±4.56)mV及-(41.60±3.26)mV,偶联SA后,SA-QDs及SA-MNPs所测zeta电位负值较偶联前均降低,分别为-(26.30±2.06)mV和-(27.00±2.11)mV。偶联SA前后,QDs、SA-QDs、MNPs及SA-MNPs在琼脂糖凝胶中均由阴极侧向阳极侧移动,但偶联SA后的SA-QDs和SA-MNPs泳动速度分别慢于QDs和MNPs,并且在紫外线的激发下,QDs和SA-QDs均发射较强的红色荧光。FTIR图谱显示,1550 cm-11650cm-1处可见苯环上C=C键伸缩振动吸收峰,而同时3200 cm-13350cm-1处可见FA苯环上C-H键的伸缩振动吸收峰,这些均是FA特征性的伸缩振动吸收峰,证实FA已成功偶联到PAMAM,同时在1650cm-11750 cm-1处可见biotin与表面富含氨基基团的PAMAM发生化学反应的新生化学键,间接证明FA-PAMAM-biotin的偶联成功。2、细胞染色结果显示,以FA为靶向分子的SA-QDs荧光探针可特异性标记SKOV3细胞,荧光信号强度高达114.92±2.87 a.u,预先加入的游离FA可抑制该靶向探针与细胞的结合,致使荧光信号强度明显减弱,为57.86±7.59 a.u,且FR低表达的A549细胞荧光强度较弱,仅为14.94±0.83 a.u。与此同时该探针标记SKOV3细胞的荧光信号比未经PAMAM(47.81±1.35 a.u)或BAS(77.50±2.43a.u)介导的QDs探针显著增强。结果表明FA靶向SA-QDs荧光探针具有显著的荧光信号放大作用,并呈现出良好的靶向性。3、建立基于FA-PAMAM靶向系统联合BAS磁信号放大方法富集分离SKOV3细胞实验研究中,对该富集分离方法中各参数进行优化,当在FA-PAMAM-biotin投入量为2 pmol,FA-PAMAM-biotin与SKOV3细胞反应时间为60 min,SA-MNPs用量70μg,反应30 min后,磁分离30 min为最优捕获条件,捕获效率最高可达83.41%。4、MTT比色法显示在实验中所用材料对细胞无毒性作用,细胞分离后培养结果显示磁分离后的细胞仍可贴壁生长,保持良好的活性。结论:1、成功偶联并获得性质稳定、生物相容性好的SA-QDs和SA-MNPs,并成功合成了FA-PAMAM-biotin。2、SA修饰QDs结合生物素化的FA可靶向标记SKOV3细胞,该染色方法具有明显的量子点荧光信号放大作用。3、结合FA-PAMAM靶向系统结合BAS系统实现磁信号放大,可实现FR高表达SKOV3细胞的特异性和高效捕获,且捕获得到的细胞具有较高的生物活性,该捕获体系在卵巢癌循环肿瘤细胞筛查方面具有一定的应用前景。