颅骨缺损修复用镁钙合金网的设计及性能

来源 :2017中国生物材料大会 | 被引量 : 0次 | 上传用户:idcxinrui
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  颅骨缺损修复技术使用的材料无法满足缺损尺寸过大或者生长发育期小儿的颅骨缺损需要.采用可降解镁钙合金以网状结构进行颅骨修复,既具有优良的力学性能和生物相容性,自身又可以完全降解,降解产物没有任何毒副作用,从而实现生理性颅骨愈合.设计出个性化需求的镁钙合金颅骨修复网,进行受力与变形分析,建立可生物降解镁钙合金网的颅骨缺损模型.按照预设缺损尺寸,按照不同图案,排布密度用利用Geomagic studio,mimics,ZBrush 软件分别对颅骨缺损进行设计加工,.从材料消耗、加工难易、应力分布、以及位移程度方面进行设计分析,取两个优化方案.利用激光雕刻技术成型镁钙合金网.通过力学检测及体外测试获得镁钙合金网的力学及理化性能.根据大鼠CT 头颅数据,建10x10mm 大小颅骨缺损,利用激光雕刻技术,制备镁合金网.将镁合金网用于大鼠颅骨缺损修复,对其在修复过程中力学支撑性进行跟踪观测,经行抗压试验、抗剪切试验、以及三点抗弯实验获得生物力学指标,评价成骨效果,探讨修复材料的降解与颅骨生长速率的匹配度、镁合金网体内生物相容性 等颅骨修复过程中的关键科学问题.实验证明,颅骨修复用 镁钙合金网 的力学满足标准(压缩强度大于25MPa,弯曲强度大于20MPa).动物试验证明镁钙合金网完全满足生长期颅骨缺损修复的要求,在完成力学支撑作用中可控降解,降解中有效促进骨骼.
其他文献
蛋白质吸附是决定磷酸钙生物材料生物学性能的关键因素.钙离子和磷酸根离子参与蛋白质的吸附过程,从而影响蛋白质的吸附行为.本文采用分子动力学模拟方法研究了钙磷离子溶液环境下,蛋白质在羟基磷灰石(HA)(001),(100),(110),(010)表面的吸附行为.结果表明碱性蛋白比酸性蛋白更有利于HA 表面的吸附.HA(110)表面比HA(001)和(100)吸附更多酸性蛋白.HA(010)表面吸附较多
碳点具有明亮的荧光发射、优异的光稳定性和良好的生物相容性等优点,且其成本低廉并易于制备,因此在生物成像、生物分子的检测、细菌鉴别、微生物活/死鉴定以及药物递送等方面受到了极大的关注[1-4].在本研究中,我们通过溶剂热法以硅烷化试剂为原料一步制备了一种新型的多功能碳点,该碳点同时具有微生物和斑马鱼成像、线粒体靶向细胞成像以及Fe3+检测的能力.所制备的碳点显示出优异的荧光性质和良好的生物相容性,可
碳纳米管(CNTs)拥有独特的一维结构,较大的比表面积,良好的导电性和化学稳定性能,可作为载体材料增加电子转移速率.但是,CNTs本身容易团聚,成束出现并且表面缺少活性基团,这对电极界面的构建是十分不利的.目前,活化CNTs的主要方式是通过表面强烈的氧化过程,例如通过浓酸加热回流的方法产生大量含氧功能基团(例如羟基、羧基、羰基等).然而这种强烈的氧化处理过程会严重的腐蚀CNTs并且会产生大量的缺陷
1 引言院内细菌感染严重威胁患者的生命健康。其根本原因是细菌在医用材料表面的粘附进而形成顽固生物膜[1]。目前,广为认同的院内细菌感染路径之一为存储时细菌在医用材料表面的粘附[2]。因此,构建杀菌性生物材料表面对于及时杀死外源性细菌,减少院内感染机率具有重要意义。
用电化学沉积方法在钛表面制备辛伐他汀羟基磷灰石涂层,利用成骨细胞对其进行生物学评价.以不同浓度的辛伐他汀(10-7、10-6、10-5 和10-4 mol/L)在纯钛表面制备涂层.对其表面进行扫描电镜、X 射线衍射、FTIR 检测.用LC-MS/MS 法检测涂层表面辛伐他汀的释放量.通过对MC3T3-E1 前成骨细胞的增殖、碱性磷酸酶(ALP)和骨钙素检测来评价涂层促成骨能力.扫描电镜观察显示棒状
纳米颗粒磁感应热疗是一种恶性肿瘤的物理新疗法,无放疗和化疗的强毒副作用,而且可以实现一次置入,多次重复治疗,直至达到医疗效果为止.尤其是对于人体某些不宜手术切除的重要器官恶性肿瘤(例如,脑胶质瘤、舌癌等)的治疗具有其它疗法不可比拟的优势.磁感应热疗还能激发正常组织的主动免疫功能,清除其他病灶和避免癌细胞远处转移.因此,近年来无论是实验室研究还是临床应用都获得了蓬勃发展.目前纳米颗粒磁感应热疗临床应
钛和钛合金由于它们具有优异的生物相容性,机械强度和耐腐蚀性成为最受欢迎的生物材料之一。其中钛表面纳米结构由于与生物大分子尺寸较为接近,具有可装载的空腔,极高的比表面积等被广泛应用于生物医药领域。许多研究表明,由阳极氧化法制备的二氧化钛纳米管阵列的结构类似于密质骨的纳米结构可作为成骨修复材料。二氧化钛纳米管的尺寸可以从几纳米到几百纳米,虽然有越来越多的科学家对纳米管结构性质对生物学相应的影响展开研究
目前,研究医用镁合金的腐蚀降解行为多采用静态体外降解实验,关于动态流场环境对镁合金腐蚀行为影响的研究大多集中在对比动态环境与静态环境下其腐蚀行为的区别,定性地证明了流场环境对腐蚀的加速作用,而对于不同流速对其腐蚀行为的影响以及流速与镁合金腐蚀速率的定量关系鲜有报道,对同一流速流场作用下样品不同部位腐蚀的不均匀性也缺少关注。本工作采用自主构建的体外模拟流场环境实验平台,通过电化学阻抗谱(EIS)测量
以不规则钛粉和钼粉及粘结剂为原料,采用粉末注射成型的方法制备了二元Ti-12Mo合金,探讨了制备工艺对其密度,显微组织和力学性能的影响.随后通过电化学测试对其耐腐蚀性能进行了详细的评估.结果表明:改进后的注射成型过程具有较高的装载量(65 vol.%),并且烧结后其氧与碳的增量显著降低.在1400℃下烧结的Ti-12Mo合金具有最优的力学性能,其拉伸强度为835MPa,延伸率为4.0%,弹性模量为
已证实,二氧化钛纳米管阵列具有良好的生物活性,同时,纳米管阵列也十分适合成分的装载,因此,本文分别采用SBF 浸渍法和电化学方法,在二氧化钛纳米管阵列表面装载了Ca、P 和Ag,并比较了装载前后纳米管阵列的生物活性、生物相容性,同时考察了装载后表面的抑菌性,结果显示,装载后的二氧化钛纳米管阵列表现出了更加优异的生物活性和生物相容性,同时Ag 的装载,使二氧化钛纳米管阵列对于金黄色葡萄球菌表现出了明