石墨烯/凹凸棒土复合聚乙烯醇材料的制备及性能研究

来源 :中国化学会第29届学术年会 | 被引量 : 0次 | 上传用户:lunlunyy
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  还原氧化石墨烯同时与聚合物和其他纳米材料都具有良好的亲和性,因此可用于促进传统纳米材料在聚合物中均匀稳定地分散,进而提高其综合性能[1-2]。本文首先在超声条件下制备了氧化石墨(GO)/凹凸棒土(ATT)纳米复合材料,TEM照片显示ATT均匀地附着于GO表面。其次,我们采用冷冻干燥获得干燥的纳米复合材料,然后采用溶液复合法将其与聚乙烯醇复合,溶剂挥发后再在130oC真空烘箱中处理4h,除去溶剂的同时对氧化石墨进行了热还原,最终获得了纳米材料中聚合物中均匀分散的PVA/RGO-ATT复合材料。与不含石墨烯的PVA/ATT复合材料相比,石墨烯的存在可显著提高ATT在PVA中的分散性,所制备的复合材料在高温下具有更高的热力学稳定性,可显著提高PVA的使用温度。同时,实验表明,这种GO辅助分散传统纳米材料的方法也可用于其他聚合物材料的复合及性能改善。
其他文献
氟化石墨烯(FluorinatedGraphene,FG),即氟原子共价连接到石墨烯片层上,是一种重要的新型石墨烯衍生物1.它不但保留了石墨烯独特的二维结构,又由于氟原子的引入,使其具有一些不同于石墨烯的优异性能.然而,如何实现在温和条件下大规模制备且氟含量可调控的氟化石墨烯,尚未有切实可行的方法.我们设想如果能将氧化石墨烯中的含氧官能团通过化学反应转化为含氟基团,不失为一种制备氟化石墨烯简单可行
大碳笼富勒烯因其产率低以及存在多种异构体所以目前研究极少.本工作中,我们首先通过传统的电弧放电法合成了一系列富勒烯混合物,并通过高效液相色谱进行分离,得到了低产率的大碳笼富勒烯C102.然后以VCl4作为反应物对上述分离所得到的C102进行氯化反应,并利用同步辐射X射线单晶衍射对所得到的的氯化产物(C102Cl20)进行单晶结构表征及化学性质研究,发现C102在氯化过程中,碳笼结构发生了重排,由原
通过衍生化反应可以实现对富勒烯碳笼进行改造得到碳笼缩小的非经典富勒烯[1,2].本工作中,我们通过将大碳笼富勒烯C100和VCl4,SbCl5进行氯化反应,结合同步辐射单晶测试并解析产物结构,确定其为失去四个碳原子的非经典富勒烯氯化产物C96Cl20,其碳笼含有三个七元环,不同于只有五元环和六元环的经典富勒烯.三个七元环产生于两次C2的失去和一次Stone–Wales转化,经过结构反推确定了反应的
无机纳米结构构成的三维网络在作为储能器件电极材料时能够有效提升活性物质负载量和粒子/电子传导效率,且具有良好的结构稳定性,因而其合成与应用受到了广泛关注.由无机赝电容纳米线构成的三维网络具有更加开放和稳定的孔隙结构.因而能够提高电极的容量与循环稳定性.然而,这种结构的有效合成仍然是纳米材料合成领域的一个挑战.本研究通过引入质量含量仅为6wt%的氧化石墨烯作为纳米级隔离物,以一步法水热反应合成了超细
有机无机复合胶体晶在显示、传感、防伪、光催化、光电池等研究领域具有巨大的应用前景,受到研究人员的广泛关注。本文利用光聚合固定单体与乙二醇混合溶剂中的介稳态SiO2组装体,从而制备出具有形变变色效应的有机无机复合胶体晶材料。介稳态胶体晶前驱物的使用可在复合材料中引入高含量的有机溶剂,从而极大提高复合物的柔软度和最大形变率。与传统的蛋白石结构材料相比,这种新型有机-无机复合物不仅具有优异的形变变色灵敏
Functional organometallic molecules have attracted much research attention recently in the field of organicoptoelectronics.It was shown that nonmetallic main-group elements can exhibit distinct electr
会议
Through investigate the origin of the relaxation barriers and the magneto-structural correlations in three(DMF)4MReⅣCl4(CN)2(DMF = dimethylformamide; M = MnⅡ(1),NiⅡ(2),CoⅡ(3))single-chain magnets(SCMs
会议
超长碳纳米管是指利用化学气相沉积法在平整基底上制备的沿气流定向、平行排列、能够达到厘米级以上长度的碳纳米管类型。超长碳纳米管遵循顶端生长模式,具有很低的缺陷密度,能够体现出碳纳米管本征的优异性能,是透明显示、微电子、超强纤维以及航空航天等领域的尖端基础材料。本工作研究了超长碳纳米管的生长机理,提出了基于Schulz-Flory分布机理的长度调控的概念,制备出了单根长度达55厘米的超长碳纳米管,这些
本研究发展了石墨烯的结构与性能调控方法,实现了石墨烯的可控与可逆功能化,充分发挥了其对外界能量的高效吸收与转换能力。通过界面设计,增强了石墨烯与聚合物等基体材料之间的相互作用,使能量和载荷可以在界面进行有效传递。接下来,利用功能化石墨烯作为纳米尺寸的能量转换单元,合成了新型智能材料,实现了对多种外界能量的高效吸收。进一步的研究表明,这类材料被损坏后,在红外光、电、电磁波等刺激作用下,能在短时间内实
已有的碳质材料制备方法中,固相炭化方法长于对材料宏观尺度的形态调控,气相沉积方法则实现材料微观结构调控和碳纳米材料的可控制备。氧化石墨烯的界面组装为碳基材料可控制备提供一个新的路径——溶液相组装制备,这种方法实现了碳功能材料在介观尺度的织构精确调控,构建了很多新型碳功能材料。我们课题组对氧化石墨烯的界面组装性质进行了系统研究[1-3],并提出了多种新颖碳功能材料的溶液相制备方法[4-6]。此次报告