Highly Selective Enrichment of Phosphopeptides with High-Index Facets Exposed Octahedral Tin Dioxide

来源 :第八届全国化学生物学学术会议 | 被引量 : 0次 | 上传用户:aibertini
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Many efforts have been devoted into developing novel materials for selective capture and enrichment of low-abundant phosphopeptides prior to mass spectrometic analysis.In the present study, octahedral tin dioxide nanoparticles with exposed high-index {221 } facets were firstly applied in the selective capture and enrichment of phospho-peptides.
其他文献
本研究将还原石墨烯(RG)分散在壳聚糖(CS)溶液中制备了还原石墨烯-壳聚糖纳米复合物,利用该纳米复合物修饰玻碳电极固定牛白介素-4(BoIL-4)抗体,构建了一个新颖的电化学阻抗免疫传感器用来检测BoIL-4.扫描电子显微镜、循环伏安和接触角测量被用来表征该BoIL-4免疫传感器.
细胞电融合和细胞培养是生物技术上用于构筑生物微反应器和进行生化反应、生物合成的常用方法.长期研究已经发现细胞有能力还原一些金属离子而形成相应的金属纳米粒子,以及有能力将一些金属离子转化为金属氧化物、硫化物等功能性纳米材料,如硫化镉纳米粒子.
The identification of biomarkers associated with disease states is significantly important for disease diagnosis and treatment.However, biomarker discovery is time-consuming and labor-intensive proces
H/ACA ribonucleoprotein particles (RNPs), the most complicated RNA pseudouridylases, use H/ACA guide RNA for substrate capture and four proteins (Cbf5, Nop10, Gar1 and L7Ae) for pseudouridylation.Prev
胞内NAD(H)水平对氧化还原代谢及其他一系列生物学过程具有重要影响,但对NAD(H)的降解代谢及稳定性尚缺少充分了解.通过研究模式材料Escherichia coli中NAD的降解方式,发现NAD降解活性主要分布在胞质外,而胞内NAD降解依赖于胞外NAD降解活性.
To provide reference for the design of gene delivery systems, the mechanisms of cationic liposomes mediated transmembrane routes of endocytosis for gene delivery were investigated.Various inhibitors o
烟酰胺腺嘌呤二核苷酸(NAD)是生物体内重要的辅酶,与其依赖的脱氢酶结合并行使催化功能时,通常以烟酰胺单核苷酸(NMN)朝向酶活性口袋内,腺嘌呤核苷酸(AMP)朝外的伸展状态形成复合物,反应过程经历结合、氢传递和解离过程.NAD与脱氢酶的结合力包括氢键、范德华力、疏水作用等,是其在生物体内参与众多生物化学反应的作用基础.
Most studies of drug discovery today are focused on developing small-molecule inhibitors and only small number of enzyme activators has been identified.However,finding allosteric activators is a promi
糖基化是最普遍却也最为复杂的一种蛋白质翻译后修饰.聚糖在信号传导、生物识别、胚胎发育等一系列生物过程中发挥着至关重要的功能.糖基化修饰必须得到严格的调控,其改变或失调往往伴随着各种人类疾病,如糖尿病、炎症和癌症等.
本研究合成了新颖的钛酸锶半导体纳米材料,用链霉亲和素将该纳米材料进行生物功能化,通过链酶亲和素对生物素化抗体的特异性识别,构建了一个高灵敏的新型AFP电化学免疫传感器.采用一步夹心温育后,然后加入酶的底物硫堇和过氧化氢,引发增强的电化学检测.