Li-based chalcogenide glasses for solid electrolytes

来源 :第八届中国功能玻璃学术研讨会暨新型光电子材料国际论坛 | 被引量 : 0次 | 上传用户:Hai123321
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  With growth of portable electric devices such as laptops,mobile phones and electric vehicles,energy storage is becoming more and more important in daily life.Lithium secondary batteries are extensively used because of their high-energy density[1].However,organic electrolytes conventionally used in these ones present a risk of flammability and leakage.To solve safety issues,all solid-state batteries using non-flammable electrolyte with high energy density have to be developed.Glassy materials are easy to shape and present a wide range of control of properties with composition.Moreover,they are characterized by isotropic properties and no grain boundaries,explaining higher ionic conductivity values generally observed than that of corresponding crystal[2].Thus,glassy electrolytes exhibit good potential to be used in all solid state batteries.In this study,GeS2-Ga2S3 was chosen as the base glass-former.Indeed,this one is known as a good host to integrate alkali halides(MX)and to obtain a drastic increase of ionic conductivity[3].As Li halide was showed as exhibiting the highest ionic conductivity[4-6],the alkali was added to the base glass-former as LiCl.Pseudo-temary glasses were synthesized by melting elements and compounds in an evacuated silica ampoule and by quenching it in salted water.Two different series based on the host glasses 0.8GeS2·0.2Ga2S3 and 0.7GeS2·0.3Ga2S3 were studied to highlight the influence of LiCl content.Electric properties of these series were investigated by means of impedance spectroscopy.Raman scattering measurements were performed to show the composition dependence of local structure and help to understand the effect of structural changes on the ionic conductivity.
其他文献
The Co/Pt multilayers with Pt and MgO/Pt undeder were prepared by magnetron sputtering and the perpendicular magnetic anisotropy(PMA) of the multilayers were researched by the means of Anomalous Hall
会议
Nano composite permanent magnetic materials have Re2Fe14B/a-Fe,Fe3B/Re2Fe14B,Sm2Fe17Nx/a-Fe and so on.Among them,the Nd-Fe-B system is most widely used.In order to overcome the lacks of Nd2Fe1aB/a-Fe
会议
Heat storage is one of the critical aspects for uninterrupted operation of concentrating solar power station.Metal hydrides can storage heat to more than 2MJ/kg,which is about 10 times higher than fus
推动磁电子学快速发展的一个重要原因是其能够迅速产业化,目前,各类磁电阻效应在广义的磁传感器方面都得到了广泛的应用[1].近年来,作为有着悠久历史的反常Hall效应的研究再次获得了物理学界的普遍关注,除了对其相关机理的再认识,在CoFeB基垂直磁化薄膜的研究中,我们发现其在超高灵敏磁场探测方面也具有潜在的应用前景[2].在这个报告中,我们首先对MgO/CoFeB/Ta的反常Hall效应,及其线形反常
会议
铁磁性材料同时受到轴向磁场和周向磁场的作用时,会引起材料沿轴向产生一个扭转,这种现象称为魏德曼效应(wiedemann effect).魏德曼效应是铁磁性材料的一种磁机械效应,一直认为与材料的磁致伸缩性质有关,属于特殊的磁致伸缩现象.这种现象对于开发应变大,转换能量高的新型磁控功能材料具有重要意义.
会议
The float glass process is widely used,since it has excellent quality and productivity,and accompanies with low cost,variable production size and convenient online process.Approximately 90%of the worl
会议
Nd3+/Yb3+ co-doped phosphate glass(molar ratio of Nd3+/Yb3+=0.25)was prepared by traditional melt-quenching method,and further used to draw double cladding fiber bystack-and-draw methodin this work.Hi
会议
The structure and optical properties of B2O3-Al2O3-Na2O glasses were investigated in this work as a function of B2O3 concentration.With increase of B2O3 content,the emission intensity of doped rare ea
会议
TiN薄膜具有耐磨、耐高温、耐腐蚀以及优良的光学、电学及生物相容特性,应用于机械、电子、冶金、建筑节能和医学领域.本文以四氯化钛乙醇溶液为钛源,以聚乙烯吡咯烷酮(PVP)为成膜助剂,利用非水解溶胶-凝胶法合成出TiO2薄膜,再结合还原氮化技术,在NH3气氛下还原氮化制备出TiN薄膜.利用XRD、XPS、SEM、UV-VIS-NIR、RAMAN和四探针测试仪研究了TiN薄的相组成、显微结构、光学及电
Li4SnS4,with a thiostarnate-LISICON structure,which is very similar to the thio-LISICON parent system Li4GeS4,is reported to have shown a promising Li+ ion conductivity of 7 × 10-5 S·cm-1 at 20 ℃ and