甲基亚磺酸参与的硫酸-二甲胺成核机制

来源 :NCEC2019第十届全国环境化学大会 | 被引量 : 0次 | 上传用户:soochow_deer
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  大气气溶胶对大气环境和人类健康有着重要影响,新粒子的形成是大气气溶胶的重要来源,但其形成关键阶段的机制还不清楚。硫酸(SA)是驱动新粒子形成的重要成核前驱体,二甲胺(DMA)可稳定团簇中的SA,显著加强成核速率。
其他文献
锂氧电池的放电过程依赖于Li+参与的氧还原反应(Li+-ORR),但是目前对Li+-ORR的机理缺乏深入认识。本文利用现场光谱电化学结合第一性原理,研究了Li+/DMSO体系的氧还原机理,揭示了O2-和LiO2在Li2O2生成过程中的作用,确定了Li+-ORR中间产物和基元反应,提出了电位相关的溶液相和表面相生成Li2O2的反应机理。
由多孔超薄纳米片自组装合成的分层多孔CuCo2O4微米花,应用于锂离子电池及锂氧电池,展现了其优异的电化学及电催化性能。组成该材料的多孔超薄纳米片不仅可以缩短锂离子扩散距离[1],缓解充放电过程中的体积效应,而且由于其比表面积较大且多孔的性质,使其暴露出更多的活性位点,从而增大了活性物质与电解液及氧气的接触[2]。
双酚A是高分子化学领域中最重要的单体之一,但双酚A的合成依赖于化石资源,以无机酸为催化剂[1],并且双酚A自身的毒性已引起人们的重视[2],因此,以生物质资源为原料通过绿色途径合成生物基双酚具有重要意义。
锂硫电池具有高的能量密度,被认为具有前景的下一代动力能源存储体系。然而仍有一些重要的问题制约着锂硫电池的实际应用,如活性物质的低利用率和容量的快速衰减。通过多离子调控的方法一步制备多孔三维氮硫双掺杂的石墨烯,不仅可以提高纳米碳材料对多硫化合物的亲和力,而且改变组装方式,形成的三维网络结构更有利的孔结构的形成、适应充放电过程中硫的体积变化和对多硫化锂的吸附限制作用。
Li4Ti5O12(LTO)has been considered as a promising anode material for lithium-ion batteries(LIBs).
全球信息化技术的飞速发展和便携式电子设备的广泛应用对锂离子电池材料提出了更高的要求,研究更安全、更高比容量的负极材料已成为一个重要的方向.[1].Li3VO4材料与传统石墨负极材料相比,具有更高的电压平台,可有效防止锂枝晶的产生,避免短路,提高电池安全性.
以葡萄糖为碳源和交联剂,采用一步水热法和冷冻干燥技术合成了碳包覆二氧化锡/还原氧化石墨烯(SnO2/RGO/C)泡沫。该泡沫作为自支撑锂离子电池负极材料表现出优异的容量性能和良好的循环稳定性(在电流密度为100mA/g下循环130圈后比容量可达717mAh/g)。
以1,4-二乙炔基苯和4,4-二溴三联苯为单体,通过四(三苯基磷)钯/碘化亚铜催化偶联共聚反应制备微孔共轭聚合物微球(CMP-MS)。将获得的CMP-MS在氮气保护下的气氛炉中恒温煅烧(400℃下2h,700℃下4h)得到多孔硬炭微球(PHC-MS)。
过渡金属氧化物Fe3O4在充放电过程中表现出的差电子导电性和较大体积变化都阻碍了它在锂电池中的实际应用[1,2]。通过纳米包覆技术引入外壳材料可以改变Fe3O4内核的表面性质(如表面电荷、反应特性),使内核稳定性与分散性得到明显提高,提升内核材料在电学器件等方面的特性[3,4]。
本文设计了两个系列阳离子三肽类脂,分别以赖氨酸和鸟氨酸三肽为头部,氨基甲酸酯键为连接键,C12和C14双碳链为疏水尾部.将阳离子三肽类脂制备阳离子脂质体,脂质体基本呈球形,尺寸在100 nm左右,Zeta电位为40-60 mV.