脉冲红外测定金属锆中氧含量

来源 :第8届全国高速分析学术交流会 | 被引量 : 0次 | 上传用户:hzy11
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文介绍了脉冲加热红外检测法来分析测定锆中氧的含量.通过各种试验证明,脉冲红外不仅灵敏度高,分析精度好,而且分析周期短,能充分满足产品中氧的测试要求.
其他文献
纳米科技将成为下一代生物技术的核心技术,21世纪作为主导技术的纳米科技,与生物技术交叉融合,是循环经济与可持续发展的必然趋势。纳米科技是21世纪90年代兴起的一门新兴交叉学科,至今纳米科技所取得的成果,是以让整个世界为之震撼,使人类进一步认识了物质规律,掌握了改造微观世界的武器。这将为我们带来第三次工业革命,为工业界提供巨大财富的商机。本文从纳米材料的基本特性及纳米材料在国内外水产品加工工业的应用
研究了Ar微波低温等离子体引发、紫外辐射聚合将P(AMPS/NIPA)/CaCO3二元智能凝胶接枝到UHMWPE织物工艺中各因素对接枝率的影响。探讨了织物的温敏性、pH敏感性及成孔剂CaCO3的加入对其响应速度的影响。结果表明,在紫外集光照射强度一定时,AMPS浓度、交联剂浓度是影响织物接枝率的主要因素。该织物LCST约为38℃,其SR均随温度、pH变化而变化,且其温敏性吸水.失水动力学曲线呈现很
本文介绍了用相对密闭的大面积常压低温等离子体设备,以及用该设备对全棉坯布的前处理结果。通过测定织物的退浆率、毛效和白度评价了退浆效果,并利用共焦显微镜的表面照片分析了经等离子体后的表面微观状态变化。工艺实验表明:经等离子体对全棉坯布处理后,再经低浓度、短时间退浆处理,就能达到常规碱退浆效果。综合对比计算加入等离子体的处理工艺能耗与传统方法的能耗比较,我们已明确得到采用等离子体处理相结合的新退浆工艺
为提高彩棉产品的附加值,在传统彩棉面料基础上,采用缎纹、小提花、大提花等多种织纹,并首家采用国际最新香味微胶囊缓释技术-SPTM对彩棉面料进行整理,提升彩棉面料的品质及功能性,引领彩棉市场流行。
以三乙烯四胺、丙烯酸丁酯、环氧氯丙烷等为主要原料,通过对反应温度,反应时间,反应物配比等反应条件的研究,制备了反应型无醛固色剂;并将该固色剂用于活性染料染深浓色棉织物的固色实验中,测试其干、湿摩擦牢度。实验结果表明:干摩擦牢度达到4-5级,湿摩擦牢度可达4级。同时,对不同分子量的固色剂进行了特性粘度测试,结果表明:特性粘度值在1.7575左右的固色剂,其固色效果较好,而低于或高于1.7575,固色
自主创新研制出一步水媒法合成羧甲基羟丙基田菁胶工艺,合成反应不是针对田菁胶粉而是针对胚乳片进行,直接粉碎加工得到改性产品。考察了合成过程中氢氧化钠、环氧丙烷、氯乙酸、反应温度、反应时间等因素对产品粘度和水不溶物含量的影响,获得了理想的工艺条件:氢氧化钠、环氧丙烷、氯乙酸与胚乳片的质量比分别为0.30:1,0.20:1,0.40:1,反应温度为80~85℃,反应时间100~110min。合成的羧甲基
本文通过试验的方法对差别化纤维系列的取向和蠕变现象的分析,研究指出了差别化纤维内部结构与力学性能的关系,结果表明差别化纤维内部大分子链的对称性越高,规整性越好,越容易排列形成高度有序的结晶区;大分子链的取向度越高,取向因子越大;分子链刚性越大,杨氏模量越大;长链分子柔性越大,蠕变现象越明显。本研究对我国差别化纤维增加附加值,更高层次的发展具有很重要的指导作用。
可生物降解材料在医用材料领域得到越来越广泛的应用。由天然生物可降解材料制备的抗菌海藻酸/明胶共混纤维具有较高的生理活性、优良的物理性能、止血性好、高吸湿率和抗菌性而用于医用材料。本文主要论述了抗菌海藻酸/明胶共混纤维的成纤机理,纺丝工艺过程,及其作为医用敷料、纱布、医用缝合线、人造皮肤、美容面膜、卫生保健织物的应用。
本文研究了一种含有聚乳酸载药纳米粒子聚丙烯腈纤维的制备方法,并研究了该纤维的形态结构与药物控释性能进。研究中采用自乳化溶剂挥发法制备聚乳酸载药纳米悬浮液,通过将适量硫氰酸钠、聚丙烯腈先后加入悬浮液制备纺丝原液,然后通过对共混纺丝原液进行湿法纺丝制备出载纳米药物纤维,与直接将聚乳酸、药物、聚丙烯腈共溶于N,N-二甲基乙酰胺所制备的载药纤维相比,发现载纳米药物纤维比直接共溶纺丝液制备的普通载药纤维具有
本文采用静电纺丝技术与溶胶-凝胶涂附技术结合,将二氧化钛溶胶涂附于电纺聚丁二酸丁二醇酯(PBS)纳米纤维膜表面,形成TiO2-PBS同轴纳米纤维,煅烧可获得TiO2纳米管。试验采用热重分析(TG)、扫描电镜(SEM)、透射电镜(TEM)、X射线粉末衍射(XRD)等分析测试手段进行了表征。结果表明,经过450℃的煅烧,可直接制备纯净锐钛矿晶型,直径在50~100nm之间的TiO2纳米管。