制备高纯锌过程中电解液体系组成的研究

来源 :2008年全国冶金物理化学学术会议 | 被引量 : 0次 | 上传用户:majunchigg
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在异极间距40mm,电解温度30℃的条件下,通过对高纯锌生产的电解液组分的研究分析,从中选择出合适的电解液组分和电解液中各组分的含量.经对所选择的ZS、SS、AS、SA、AA电解液组分进行分析,得到了适合的电解液组成为:锌离子浓度90~110 g/L,AS 40 g/L,NS 20g/L.
其他文献
本文以氯化铵为氯化剂,湿空气为氧化剂,主要研究稀土氧化物的氯化-氧化反应特性,根据铈和非铈稀土元素氯化物的氧化产物不同实现CeO2的分离.考察了反应温度和反应时间对稀土氧化率的影响,经氯化反应生成的稀土氯化物的最佳氧化反应温度和时间分别为600℃和60 min,实验产物经x射线衍射分析,只有CeO2的衍射峰,实现了单一稀土CeO2的分离.
研究了稀土添加剂对用三种不同基体材料制备的泡沫铝合金抗压屈服强度的影响.实验得出稀土添加量为0.40%(质量分数)时,所得稀土泡沫铝合金具有较高的弹性模量、抗压屈服强度以及流变平台区,文章结合金相分析探讨了稀土对基体铝合金的增强机制.
采用可控燃烧合成法(CHCS)制备了La2Mg17-Ni复合储氢材料.XRD和SEM研究发现,强磁场抑制了杂相La(OH)3的形成,添加Ni后能在合金颗粒表面形成MgH2、Mg2NiH4和少量La氢化物所组成的复相组织.通过PCT性能测试发现,材料在523~623 K范围内最大可逆吸放氢量为3.7wt.%,磁场处理能降低反应热效应.催化相Ni的添加使材料的起始放氢温度从625K降低到520K,磁场
改善并自建了热分析测试装置,对实验装置的可靠性进行了论证.为了获得电解质的基础数据并为低温电解提供理论指导,研究了Na3AlF6-K3AlF6-AlF3体系的部分初晶温度,K3AlF6占K3AlF6和Na3AlF6质量总和的百分比为0~20wt.%,AlF3占总质量百分比0~30wt.%,提出了研究范围内相关系数为0.993的计算初晶温度用经验公式和凝固等温线.实验结果表明:K3AlF6降低初晶温
在硝基苯进行电化学电极反应过程中,根据阴阳极产物对硝基本的电极反应机制进行了探讨.通过正交实验,确定了硝基苯电化学反应的适宜实验条件:借助离子交换膜使阴阳极产物不发生混合,明确了直接及间接电极产物,并对电极产物的宏观形成历程进行了分析.
用固相反应法合成固体电解质La2MoWO9,在723~1223K用交流阻抗法测量了La2MoWO9在空气和氩气气氛下的电导率.电导率与温度在低温区符合Arrhenius关系,在高温区符合Vogel-Tamman-Fulcher(VTF)关系.空气气氛中的活化能为1.63eV(T923K),氩气气氛中的活化能为1.47eV(T873K).
以Fe2O3为铁源,以葡萄糖为碳添加剂,利用碳热还原法成功地制备了LiFePO4/C复合材料.利用X射线衍射仪、扫描电镜研究了反应温度、反应时间对合成样品的晶体结构、表面形貌的影响.研究结果表明:反应温度、反应时间对产物的性能有一定的影响.其中,700℃下焙烧8 h合成出的样品电性能最佳,含碳量为10%的LiFePO4/C在0.1C倍率下放电,首次放电容量达159.3 mAh/g,充放电循环30次
以硅烷偶联剂KH560作为表面改性剂,采用熔融共混法制备了PP/纳米SiO2复合材料.通过BET、FTIR、SEM、力学测试、DSC分析研究了表面改性剂对纳米SiO2分散性、相容性及其复合材料力学性能、结晶行为的影响.结果表明,表面改性剂能较好地改善纳米SiO2在PP基体中分散性和相容性,并且能进一步增强对PP基体的异相成核作用.经表面改性剂处理的纳米SiO2含量为2%时,复合材料的综合力学性能好
采用电化学沉积的方法制备了片状CeO2纳米膜,并讨论了Ce(NO3)3的浓度对沉积CeO2纳米膜形貌的影响.结果表明,Ce(NO3)3的浓度越大,生成的CeO2纳米膜越厚,形貌越规整.XRD结果表明制备得到的片状CeO2是面心立方结构.
采用高温固相直接合成法制备了4CaO·P2O5粉体,辅以CaO制备成固体电解质.采用交流阻抗技术测定了固体电解质的阻抗,并计算其电导率.以4CaO·P2O5固体电解质管为敏感原件和YP及Sn-P合金为参比电极,Mo丝和Mo金属陶瓷分别作为电极引线组成磷传感器,形式电池如下:Mo∣YP∣4Ca0·P205∣[P]Fe∣Mo金属陶瓷;Mo∣[P]Sn∣4Ca0·P205∣[P]Fe∣Mo金属陶瓷;在1