Aerobic Oxidative Iodination of Arenes via Ionic Liquids Catalyzed-Activation of the Molecular oxyge

来源 :第十四届全国均相催化学术讨论会 | 被引量 : 0次 | 上传用户:blaze1982
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  Molecular oxygen,especially air,is an ideal oxidant for various organic reaction due to its inexpensive,readily available and environment-friendly character,thus many organic chemists have been fascinated to developing efficient methods for various aerobic reactions of organic compounds via the transition metal catalyzed-activation of the molecular oxygen.
其他文献
过渡金属催化偶联反应是构建C-C 键的一种强大而有效的方法,2010 年,Heck,Nigishi,Suzuki 因其在偶联方面的贡献而共获诺贝尔化学奖.
采用不同形貌、比表面积和孔径大小的介孔硅胶为载体,利用化学键合法将离子液体负载在硅胶上,制得硅胶固载化酸性离子液体.利用N2 吸脱附、红外光谱(FT-IR)、热重分析(TG)、扫描电镜(SEM)、X 射线光电子能谱(XPS)等手段对催化剂进行表征,说明离子液体已成功键合在硅胶载体上.
Bromination of arenes is an important chemical transformation because the resulting products often serve as the electrophilic coupling partner for the cross-coupling reactions to synthesize various cl
会议
香豆素存在于许多天然产物和药物中,因极具合成原料价值性而被应用于材料化学中.传统制备3-芳基香豆素类物质主要通过以下五种方法:(1)利用水杨醛和苯乙酸或者芳基乙腈进行缩合反应[1];(2)钯催化的芳基卤化物或芳基硼酸进行交叉偶联反应成简单的香豆素类物质[2];(3)钯催化羰基化反应[3];(4)碱促进的芳炔类、丙二酸酯、DMF 三组分的偶联反应[4];(5)带有取代基色酮的氧化水解[5].
本文报道了一种铜促进的sp2C-H 键断裂形成C-S 键以合成二芳基二硫醚的方法.该反应体系中不需要各种添加物及配体,对各种官能团都有较好的适用性,可推广应用到苯并喹啉、2-苯基喹啉、吲哚等相关含氮杂环化合物.
Asymmetric hydrogenation with transition-metal complexed bearing chiral ligands is a powerful approach to synthesize chiral substances from unsaturated starting materials,and thus the design and devel
Biguanides are found widely as core structures in a large variety of compounds that exhibit important biological activity[1].
Oxindole and pyrazolone scaffolds represent privileged heterocyclic structures and pharmacophores found in a variety of biologically active natural products and medicinal agents.
The spiro[pyrrolidine-oxindole] ring system,which features a spiro union of a pyrrolidine ring to the C3 position of an oxindole frame,represents an important class of structural motif found in a dive
离子液体种类繁多,被认为是一种可设计的溶剂,近年来,通过对阴阳离子的结构设计,如在阴阳离子上引入特定的取代基、调节离子尺寸以改变电荷分布等手段,发展出了一系列功能化的离子液体,已在有机合成、不对称催化、萃取分离、材料制备、电化学等方面得到了广泛的应用.