考虑双馈机组无功极限的海上风场无功优化

来源 :“紫金论电”2017智能电网保护和运行控制国际学术研讨会 | 被引量 : 0次 | 上传用户:ljmldblh
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文同时考虑双馈风机定子与网侧变流器无功发生能力,提出一种双馈风机无功极限计算方法.结合海上风场风电机组地理位置因素,精确计算海上风电场各部分无功损耗.考虑风电机组无功调节能力,结合海上风场无功电压分层控制的原则,确定海上风场无功补偿装置安装点及静态无功装置与动态无功装置容量分配原则,最后采用遗传算法,以系统网损有功最小为优化目标,对不同位置的风机进行有功-无功出力优化.
其他文献
Due to the uncertainty of SV packet transmission delay in the switches,the sampling synchronization is mainly achieved by unified synchronous clock connected to merging units of the whole smart substa
The scheme of merge unit plus conventional transformers is usually used in intelligent station.But this kind of configuration will result the dead zone in maintenance or the dead zone when breaker fai
The typical structure design of process level network,station control layer network and time synchronization network in smart substation network is analyzed.On this basis,the typical issues of the sma
Information technology of digital relay protection makes protective devices themselves strong functions of self-checking.At the same time,it helps to remove the obstacles in regards to collecting char
Smart substation is an important part of smart grid.But issues of the current smart substation automation system,like single mode interaction between substations and dispatching centers,low degree of
With the increasing of power collecting data and meteorological data types,the accuracy of short-term load forecasting of intelligent power grid dispatching system can be improved.In order to better e
This paper analyzes the application of 3-in-1 network,which includes MMS network of station level,GOOSE network and SV network of process level in smart substation.Being aimed at the problems of real-
智能电网技术发展推动下,智能需求侧响应技术能及时有效整合负荷侧资源.新能源发电技术的推广,使得在智能需求响应技术研究中考虑分布式电源的影响成为必要;电动汽车的大规模并网会给电力系统带来冲击,通过研究智能需求响应策略解决分布式电源并网和电动汽车充电给电网带来的问题具有重要的意义.本文首先分析参与响应的智能家电负荷和户用分布式电源的物理特性并建立数学模型;分别提出紧急-预防控制和日前-实时控制两种方案
分布式电源、柔性负荷和多通信方式网络等信息物理资源的部署使得传统配电网的运行控制特性发生了重要转变,因此迫切需要从信息物理融合的视角去研究相关问题.本文阐述了配电网信息物理系统的定义、本质、特征和体系,总结了其发展的四个阶段;最后通过三个实际配电网信息物理系统案例介绍了其具体应用场景.
本文分析电蓄冷空调系统经济性的主要影响因素,基于全寿命周期分析方法对电蓄冷空调系统的经济性进行分析,从电网侧、用户侧、第三方投资商等不同视角进得出电蓄冷空调系统的经济性分析数学模型.最终采用某办公楼算例分析不同蓄冷策略(冰蓄冷,水蓄冷)不同投资主体(电网侧、用户侧、第三方投资商)情况下的投资收益,给出电蓄冷空调系统的投资建议及结论.