光伏经两端MMC-HVDC系统并网协调控制策略研究

来源 :第十四届中国光伏大会暨2014中国国际光伏展览会 | 被引量 : 0次 | 上传用户:jskrrockboy
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  大容量光伏电站的远距离并网问题是制约其发展的关键问题之一,柔性直流输电技术可以解决这一问题。本文分析了光伏电站运行机理及两端MMC-HVDC 系统的输电原理,设计了光伏电站经两端MMC-HVDC 系统并网的协调控制策略。
其他文献
光致衰退效应是制约非晶硅薄膜电池发展的一个重要因素.在非晶硅/微晶硅叠层电池中引入中间层结构可以对太阳光进行选择性分配,反射部分短波段的光,增加了非晶硅顶电池的光吸收从而减少顶电池的厚度,有效地提高了叠层电池的稳定效率.本文系统地研究了沉积功率、氢气稀释比H2/SiH4、CO2/SiH4等沉积参数对SiOx薄膜光电性能(晶化率、折射率、带隙、电导率等)的影响.经过工艺优化,获得了折射率为2.2、晶
本工作主要集中在自主研发的多腔室、大面积等离子体沉积系统上,通过对工艺参数和硬件进行优化,获得均匀的大面积及高速沉积的纳米硅薄膜:1)工艺方面,系统研究了沉积压力、电极间距、射频电源功率等参数对薄膜沉积速率、膜厚的均匀性、晶化率的影响;2)硬件方面,对平面气盒和不同弦高的弧形气盒、密封气盒和非密封气盒进行系统比较,研究气盒结构对薄膜的均匀性、沉积速率的影响.通过工艺参数及硬件优化,最终得到了沉积速
高电导率、宽带隙的p型纳米硅氧(p-nc-SiOx∶H)材料作为非晶硅电池(a-Si∶H)的窗口层,使得短波响应得到明显的提升.但是由于宽带隙的p-nc-SiOx∶H的引入,使得p/i界面能带失配,恶化电池的性能.因此将具有低激活能和较低缺陷态密度的本征非晶硅氧(i-a-SiOx∶H)材料作为缓冲层,获得效率为10.64%的单结a-Si∶H电池.另,通过优化氢气处理i-a-SiOx∶H材料,得到了
本文对红外热成像在硅基薄膜太阳电池产线中应用进行了研究,通过TC图像,分析了硅基薄膜电池组件生产过程中出现的各类组件品质异常,以及各种缺陷对组件性能的影响。根据不同的缺陷对组件性能的影响,在实际生产中可以预估异常片的功率及性能,并对能够修复的缺陷进行修复,减少次品或者报废品的产生。
为适应高效率薄膜太阳电池应用,本文采用磁控溅射法生长三种不同沉积方式的氢化作用下Mg和Ga共掺杂ZnO(HMGZO)透明导电氧化物(TCO)薄膜,并通过后续湿法刻蚀技术获得绒面结构.ZnO薄膜中借助Mg掺杂,实现光学带隙展宽,提高短波长区域(即近紫外区域,NUV)的光学透过率;而通过Ga和H的掺杂作用,改善ZnO薄膜的电学特性.由于三种不同沉积方式(摆动方式、衬底固定在左侧辉光区域正上方方式和衬底
采用合适的陷光结构,可有效增加光吸收,减小太阳电池厚度,降低太阳电池生产成本.通过在玻璃上沉积Al膜,经过退火及湿法腐蚀后形成蜂窝状凹坑,可获得铝诱导表面织构玻璃(Aluminum Induced Textured glass,AIT玻璃),以这种玻璃作为衬底是实现硅基薄膜太阳电池有效陷光的方法之一.
用共溅射的方法在镀钼钠钙玻璃上制备铜锌锡三元金属预制层,采用快速升温热处理退火,分别在200℃,250℃,300℃,350℃,400℃,450℃,500℃,550℃,600℃硫化,得到的薄膜分别采用XRD,Raman,SEM物相和形貌的表征,确定了在不同温度下退火所得到的相组成.结果表明,硫化退火过程中,主要形成的二元相有Cu2S、ZnS、SnS,它们的形成温度在250-300℃.三元相Cu2Sn
氢在ZnO∶Al中是一种n型掺杂,所以它能够降低应用于太阳电池的AZO透明导电薄膜的电阻率.但是由于在ZnO中H和Al的掺杂机制不同,为了得到高性能的ZnO∶Al/H薄膜,有必要对其磁控溅射沉积的工艺进行再优化.研究了沉积温度和气压对射频磁控溅射法制备的氢化AZO薄膜的影响,发现在272℃的较高温度下,薄膜的电阻率随溅射载气中氢含量的增加而增加;当沉积温度降低至200℃时,电阻率受氢气含量影响的幅
本团队采用磁控溅射后硫化法制备铜锌锡硫电池。先在玻璃衬底上共溅射SnS2,Cu以及ZnS三种化合物,然后在硫化氢气氛中高温退火而成。在前驱体中引入金属化合物ZnS,减少了在退火过程中因为元素挥发引起的组分偏差因素。通过了解退火条件与组分流逝之间的关系,可以再退火过程中能够通过适当的参数控制来获取想要的组分,从而制备高质量的CZTS薄膜。目前通过调整前驱体组分,优化工艺条件,可以制备出效率超过8%的
本文尝试以以溅射工艺制备Zn(O,S)缓冲层代替传统工艺的CdS层和i-Zn0层,不仅工艺步骤得到简化,并且使整体工艺均在真空环境下进行,以此避免工业化生产中由于CIGS脱离真空环境可能受到的污染,从而提高产品的良率。非CdS的缓冲层普遍会有light-soaking现象,在干法制备缓冲层上尤其如此。本文在优化Zn(O,S)缓冲层的过程中,研究了不同溅射环境、S比例等因素下的缓冲层对light-s