近似锥-次类凸相关论文
在Hausdorff局部凸拓扑线性空间中考虑二元集值函数ε-严有效鞍点问题,在近似锥-次类凸(凹)假设下,利用凸集分离定理得到二元集值函......
在赋范线性空间中利用广义高阶锥方向邻接导数研究集值优化问题的超有效解。在近似锥-次类凸假设下,借助凸集分离定理和Henig扩张锥......
研究了序拓扑向量空间中非空集合的ε-(弱)有效点的一些基本性质.证明了近似锥-次类凸集值优化问题关于ε-弱有效解的标量化定理和La......
本文研究了近似锥一次类凸集值向量优化强有效解的广义鞍点表示问题.利用择一定理.得到了近似锥-次类凸集值优化问题强有效解为广义......
在Hausdorff局部凸拓扑线性空间中考虑约束集值优化问题(VP)在严有效性意义下的标量化问题,给出了VP在严有效性意义下的一种等价刻......
在Hausdorff局部凸拓扑线性空间中考虑集值优化的ε-严有效性,当目标函数和约束函数构成的序偶映射是近似锥-次类凸时,在较弱的约......
在局部凸拓扑向量李间中引入了ε-严有效点、ε-严有效解的概念.在近似锥-次类凸集值映射下,利用拓扑向量空间中的凸集分离定理,获得......
在Hausdorff局部凸拓扑线性空间中考虑约束向量集值优化问题(VP)的超有效性.在近似锥-次类凸假设下,利用择一性定理得到了Kuhn-Tucker......
目的研究局部凸空间中集值优化超有效解与鞍点之间的关系问题。方法通过广义鞍点的性质并结合择一定理,得到有关充分条件和必要条件......