Novel Lightweight and Protective Battery System Based on Mechanical Metamaterials

来源 :固体力学学报(英文版) | 被引量 : 0次 | 上传用户:zqfhj
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
The challenges facing electric vehicles with respect to driving range and safety make the design of a lightweight and safe battery pack a critical issue.This study proposes a multifunctional structural battery system comprising cylindrical battery cells and a surrounding lightweight lattice metamaterial.The lattice density distribution was optimized via topological optimization to minimize stress on the battery during compression.Surrounding a single 18650 cylindrical battery cell,non-uniform lattices were designed featuring areas of increased density in an X-shaped pattern and then fabricated by additive manufacturing using stainless steel pow-ders.Compression testing of the assembled structural battery system revealed that the stronger lattice units in the X-shaped lattice pattern resisted deformation and helped delay the emer-gence of a battery short circuit.Specifically,the short circuit of the structural battery based on a variable-density patterned lattice was ~166% later than that with a uniform-density lattice.Finite element simulation results for structural battery systems comprising nine battery cells indi-cate that superior battery protection is achieved in specially packed batteries via non-uniform lattices with an interconnected network of stronger lattices.The proposed structural battery systems featuring non-uniform lattices will shed light on the next generation of lightweight and impact-resistant electric vehicle designs.
其他文献
In this work,two typical interfaces are established for the antisymmetric plate wave by introducing linear defect in between phononic crystals with opposite valley Hall phases.The evolution of projected curves is demonstrated as the defect width increases
A novel elastic sandwich metamaterial plate with composite periodic rod core is designed,and the frequency band-gap characteristics are numerically and experimentally inves-tigated.The finite element and spectral element hybrid method(FE-SEHM)is developed
In this paper,a local surface nanocrystallization technology is used for thin-walled structures with square cross sections,and an energy absorption device of two-staged combined energy absorption structure is proposed.In virtue of the surface nanocrystall
As conducting an impact hammer testing during experimental modal analysis,the multiple impact phenomenon must be avoided.It is generally recognized that the multiple impact phenomenon is induced by the tester\'s improper operation and can be avoided thr
The peridynamic model of a solid is suitable for studying the dynamics of defects in materials.We use the bond-based peridynamic theory to propose a one-dimensional nonlocal continuum model to study a defect in equilibrium and in steady propagation.As the
Semiconductor-based electronic devices usually work under multiphysics fields rendering complex electromagnetic-thermo-mechanical coupling.In this work,we develop a penalty function method based on a finite element analysis to tackle this coupling behavio
We simulate the mechanical-chemical coupling during delithiation and relaxation of a cathode in a solid-state lithium-ion battery.Contact loss at the interface between the active particle and the solid electrolyte is considered.Uphill diffusion is observe
The Kapitza resistance is of fundamental importance for the thermal stability of the interface between the ceramic top coat and the thermal growth oxide layer in the thermal barrier coating structure,which is widely used to protect high-temperature compon
应力作用下内连导线中的夹杂等缺陷会迁移和变形,从而影响电子器件的可靠性.论文基于应力诱发表面扩散机制下的弱解描述,推导了固-固界面在界面扩散机制下的有限单元控制方程,并数值分析了应力诱发界面扩散下金属内连导线中夹杂的形貌演化.研究结果表明:在拉压应力下,夹杂会发生分节或者圆形化;在双向等值拉应力下,夹杂存在着沿长轴生长和圆形化两种分叉趋势.并且存在着临界应力、临界形态比和临界线宽.形态比、应力越小或线宽、模量比越大,夹杂越易演化为圆形.
The tensile creep fracture behaviors in brittle solids are of great significance for the safety evaluation of brittle solid engineering.However,micromechanics-based tensile creep fracture behavior is rarely studied.In this study,a micromechanics-based met