论文部分内容阅读
线性特征提取在人脸识别中的应用非常广泛,LDA是其主要方法之一,它基于Fisher判别准则,然而,当人脸训练样本数小于人脸样本向量的维数时,变换矩阵将无法直接得到,因此线性判别分析过程失效。采用了一种改进的基于Fisher准则的LDA方法,针对小样本问题提出了一种有效地解决类内散布矩阵奇异的方法,而且用ORL人脸数据进行了实验验证。实验证明该方法在正确识别率方面表现突出。