论文部分内容阅读
为了解决视觉目标跟踪过程中出现的目标表观变化和遮挡问题,在粒子滤波框架下,提出一种基于置信值重构的目标跟踪算法。通过对目标模板进行局部分块并结合提取的背景模板构建分类字典,利用概率协同表示分类算法,获得候选目标局部分块的分类概率。然后通过局部分块的分类概率重构候选目标的置信值。最终通过每个候选目标的置信值获得跟踪结果。实验表明,该文算法在目标表观变化和遮挡的情况下能够取得较好的跟踪效果。