论文部分内容阅读
为了进一步提升人脸梯度特征的光照健壮性,本文结合低秩分解能有效分离图像本质特征和噪声的特性,提出了一种光照健壮的低秩相对梯度直方图特征提取方法.首先,通过对人脸图像进行相对梯度运算获得了图像的相对梯度幅值图像和各像素的梯度方向信息.然后,为了去除相对梯度图像中由于非均匀光照而引入的光照边缘误差,利用低秩分解将相对梯度图像分解为低秩分量和稀疏噪声分量之和.最后,结合人脸图像的梯度方向信息对相对梯度图像的低秩分量进行离散化、滤波和局部二值模式编码形成了人脸的低秩相对梯度直方图特征.在经典的FERET子集