论文部分内容阅读
有限混合模型FM的分级聚类已广泛应用于不同领域,然而,由于它的计算复杂度与观测数据量平方成正比,致使在遥感影像方面应用受到了限制。另外,多光谱图像能提供空间和光谱两类信息详细的数据,但是,大多数多光谱图像聚类方法是基于像素的聚类,仅使用了其光谱信息而忽视了空间信息。本文定义一个相对混合密度函数,通过引入一个q-参数来调节各成分密度对其混合分布的贡献,提出一种广义有限混合模型GFM,设计一种新的适用于多光谱遥感影像的GFM分级聚类算法。该算法把MRF随机场和GFM模型结合在了一起,分类数通过PLIC准