【摘 要】
:
轴向运动梁是许多飞行器结构的简化模型,随着长细比增加和质量减小,梁的弹性特征愈加明显,同时运动速度对运动梁的振动特性也有显著影响。根据汉密尔顿原理(Hamilton’s princ
【机 构】
:
上海大学上海市应用数学和力学研究所,上海大学力学系
【基金项目】
:
国家自然科学基金重点项目(11232009), 上海市重点学科建设项目(S30106)资助
论文部分内容阅读
轴向运动梁是许多飞行器结构的简化模型,随着长细比增加和质量减小,梁的弹性特征愈加明显,同时运动速度对运动梁的振动特性也有显著影响。根据汉密尔顿原理(Hamilton’s principle),推导出轴向运动欧拉-伯努利(Euler-Bernoulli)梁模型受横向激励作用时的动力学控制方程。首先,在有轴向力和无轴力情况下分别对方程进行无量纲化、复模态分析,得到统一形式的频率方程和模态函数,可以用数值方法求解其固有频率和模态函数。然后,将动力学方程解耦为一个微分方程组,求解方程组,得到轴向运动梁在横向激励下
其他文献
基于非线性最小二乘法提出识别单自由度经验非线性涡激力模型气动参数新方法。通过同伦分析法获得涡振响应二阶解析解,基于该解构造非线性拟合目标函数并采用遗传算法识别出在
笔者多年来从事中医妇科临床,应用大黄治疗瘀热证有独到见解,并取得满意疗效,现报道到如下.
目的观察腹腔镜手术治疗宫角妊娠的疗效。方法回顾性分析腹腔镜手术治疗18例宫角妊娠的临床资料。结果 18例患者全部在腹腔镜下进行手术,无中转开腹,术中、术后无并发症发生
对固有时间尺度分解(IntrinsicTime—scaleDecomposition,简称ITD)方法进行了改进,提出了基于B样条的局部特征尺度分解方法(Bspline—basedLocalCharacteristic-scaleDecompositio
传统的交叉模型交叉模态(CMCM)法由于其核心矩阵的缺秩使其在全局修正时的解不唯一,为得到唯一解必须人为假定约束。以往利用CMCM法进行损伤识别的研究中,通常将损伤前后质量保
本文对妇科病瘀热证三则例案加以分析,对总结妇科病瘀热证的治疗规律有所裨益。