论文部分内容阅读
基于深度学习的视频火灾探测模型的训练依赖于大量的正负样本数据,即火灾视频和带有干扰的场景视频。由于很多室内场合禁止点火,导致该场景下的火灾视频样本不足。本文基于生成对抗网络,将其他相似场景下录制的火焰迁移到指定场景,以此增广限制性场合下的火灾视频数据。文中提出将火焰内核预先植入场景使之具备完整的内容信息,再通过添加烟雾和地面反射等风格信息,完成场景与火焰的融合。该方法克服了现有多模态图像转换方法在图像转换过程中因丢失信息而造成的背景失真问题。同时为减少数据采集工作量,采用循环一致性生成对抗网络以解除