论文部分内容阅读
提出了一种改进独立分量分析(ICA)应用于时频图像的盲源分离问题。由于相似时频图像之间存在潜在的相关性,传统的ICA对于具有相关成分的时频图像盲源分离中效果比较差,利用互信息和峭度研究了图像子带之间的相关性和本身的非高斯性,选定特定的子带进行ICA分析。通过仿真时频图像的分离试验,说明此方法分离效果明显优于ICA分离效果,并将该方法应用于转子试验台的基座松动,不对中故障信号复合故障的时频图像中,成功获取了各自故障的时频图像,从而可以获得各自的故障特征信息。