论文部分内容阅读
在充分考虑TEC序列非平稳、非线性、高噪声特性前提下,以IGS提供的2017年电离层TEC格网数据为基准,运用BP神经网络和ARMA两种模型分别进行TEC 3 d预测,重点分析两种模型在不同季节时段、不同电离层活跃强度及不同样本长度下的TEC预测性能及精度。结果表明,在不同时段,两种模型均能很好地反映TEC的变化特性,其中ARMA模型在春、冬时段及整体预测精度上略优于BP神经网络。在平静期,两种模型的平均相对预测精度分别为87.3%和87.5%,预测效果相差较小;在活跃期,两种模型的平均相对预测精度