论文部分内容阅读
针对传统反向传播(BP)神经网络对血管进行分割存在耗时长且识别率不高的问题,本研究提出一种新的基于Stein-Weiss解析函数的BP神经网络算法用于血管分割。首先为每个体素构建一个Stein-Weiss函数,然后根据SteinWeiss解析函数的解析性,计算出相应体素的16个特征值,将这些特征值输入到BP神经网络的输入层,采用BP神经网络的自学习能力对这些数据进行分类学习,最后通过BP神经网络的泛化能力来获取血管边缘。对肝脏血管分割的实验结果表明,相对于传统的BP神经网络分割算法,该算法提取的函数