论文部分内容阅读
随着大数据技术的不断发展,医疗大数据的研究也成为我国医疗建设的重要一环,聚类能够挖掘出医疗大数据中潜在隐藏的信息,协助医生、医疗管理部门、科研所进行有效工作.研究分析聚类算法K-means和K-medoids在医疗大数据的应用,从优化聚类算法降低时间复杂度、对高维医疗大数据进行特征提取降低维度、通过并行处理平台加速医疗数据的处理速度方面出发,阐明聚类算法在医疗大数据的数据预处理、数据分类、疾病预测等方面都广泛的应用.随着并行处理平台的建设,聚类算法在医疗大数据的应用也将越来越广泛.