论文部分内容阅读
目前,清晰的车牌识别算法已经成熟,但是对于人眼不能识别的模糊车牌,传统车牌识别算法的识别率较低或者根本无法识别。鉴于此,提出了一种基于卷积神经网络的车牌字符识别算法。制作了含9720幅模糊字符样本集,用8748幅样本对卷积神经网络进行训练,测试样本时,先对模糊车牌字符进行盲分割等预处理,再调用训练好的卷积神经网络对盲分割后的字符进行识别。实验结果表明:该算法对训练集的准确识别率约为99.17%,对测试集的准确识别率约为93.32%,这说明该算法对模糊车牌的识别具有鲁棒性,能应用于各种场景。