论文部分内容阅读
提出了一种基于改进的长短时记忆神经网络(Arc-LSTM)和词嵌入(Word2Vec)模型相结合的自动匹配方法.首先采用连续词袋(continuous bag of words,CBOW)模型提取中文简历文本特征,从而构建词向量,提出一种基于ArcReLU激活函数和LSTM深度神经网络优化的Arc-LSTM网络,利用该网络构建分类模型,实现文本分类.实验证明,提出的模型能有效地提高分类精度和收敛速度,实现中文简历和职位的精准匹配.