论文部分内容阅读
目前,关于直流电压下局部放电信号特征提取技术的研究极少。用于表征连续放电间相关关系的特征散点图是常用的统计分析方法,但现阶段仅用于定性分析放电现象。引入互信息、最大信息系数(maximal information coefficient,MIC)、最大信息非参数扩展类(maximal information-based non-parametric exploration,MINE)等先进的非线性相关特征分析手段,提取该类散点图定量特征。基于互信息的MIC和MINE具有普适性、公平性和对称性等重要特性。最终共提取了36个相关特征参数,与22个传统统计算子一起组成特征指纹。之后,使用最大相关最小冗余(mR MR)算法选取最优特征指纹空间并使用MIC进行优化。利用XLPE单芯电缆制作了绝缘内部气隙、主绝缘表面划伤、高压端毛刺电晕、半导电层爬电4类典型绝缘缺陷模型,将文中方法应用于试验数据分析。最终确定了含有48个参数的最优特征指纹,使用人工神经网络等机器学习方法进行模式识别可获得91%的平均识别精度。该结果表明,使用文中方法提取的散点图非线性特征可以有效反映放电模式。