论文部分内容阅读
利用粒子滤波实现行人跟踪是视频智能监控的主要方法之一,但粒子滤波的粒子退化问题尚未得到一个比较理想的解决方法。本文利用重采样后的粒子集,构造经验分布函数,用支持向量机估计状态的后验概率密度模型,再依据该模型采样,在保证粒子有效性的同时增加了粒子的多样性,从而克服粒子退化现象,并基于加权颜色直方图模型进行了行人跟踪仿真实验。实验结果表明,该方法能有效克服粒子退化现象,跟踪精度相对于标准粒子滤波算法得到了提高,且该方法无需对后验分布作高斯假设,为解决粒子滤波算法中的粒子退化问题提供了一种方法。