【摘 要】
:
提出了一种云数据中心基于数据依赖的虚拟机选择算法DDBS(data dependency based VM selection).参考Cloudsim项目中方法,将虚拟机迁移过程划分为虚拟机选择操作(VM selectio
【机 构】
:
宁夏大学 物理与电子电气工程学院 宁夏沙漠信息智能感知重点实验室,银川,750021
论文部分内容阅读
提出了一种云数据中心基于数据依赖的虚拟机选择算法DDBS(data dependency based VM selection).参考Cloudsim项目中方法,将虚拟机迁移过程划分为虚拟机选择操作(VM selection)和虚拟机放置(VM placement)操作.DDBS在虚拟机选择过程中考虑虚拟机之间的数据依赖关系,把选择与迁移代价值比较小的虚拟机形成侯选虚拟机列表,配合后续的虚拟机放置策略最终完成虚拟机的迁移过程.以Cloudsim云计算模拟器中的虚拟机选择及放置策略作为性能比较对象.实验结果表明:DDBS与Cloudsim中已有能量感知的算法比较起来,在虚拟机迁移次数和能量消耗方面都比较少,可用性比较高.
其他文献
具有间隙约束条件模式匹配问题是序列模式挖掘问题的基础与核心.无重叠模式匹配是其中的一种方法,当前研究是在间隙为正的精确模式匹配,为了进一步增加匹配的灵活性,本文探索
自动文本摘要技术是一种能从海量文本中获取重要信息的方法,它可以缓解大数据时代信息过载的问题.传统基于编码-解码自动摘要模型生成的摘要易出现句内重复、语义无关等现象,
兴趣点(POI)的签到数据体现了用户的偏好和兴趣点的分布特征,这在兴趣点推荐领域有极为重要的价值.为了缓解数据稀疏造成的推荐不准确等问题,本文提出了融合时间序列的POI动态推荐算法,结合用户与用户之间的关系、兴趣点位置以及流行度信息等.首先划分时间序列,得到时间因子的相似度;其次时间序列融入到基于用户的协同过滤算法,再根据时间的连续性特征得到基于用户的预测评分,然后将地理影响因子与基于时间的流行度
针对云计算环境下的多目标任务调度问题,提出一种新的基于Q学习的多目标优化任务调度算法(Multi-objective Task Scheduling Algorithm based on Q-learning,QMTS).该算法的
K中心选址作为一种经典问题,学者们提出了很多好的解决方法,但是对于加权距离连续K中心选址问题的研究一直没有很好的进展.本文针对连续K中心选址问题,以最小加权距离作为优
多语言文本的情感分析是情感分析领域的重要问题之一,而现有的情感分析方法着重于对单语言文本的研究.本文针对中英混合文本提出了一种细粒度情感分析模型,通过基于大规模语
人工智能的飞速发展对高性能计算提出了更高的要求,异构计算环境下任务调度问题一直是高性能计算中的关键问题.本文提出一种基于优先队列划分的调度算法(PQDSA),该算法根据DA
链路预测作为复杂网络分析的一项重要任务,其目的是寻找节点间缺失(新)的链路,识别虚假交互,对于挖掘和分析网络的演化,重塑网络模型具有重要意义.传统的链路预测方法多数采
随着安全关键性系统的日益复杂,如何提高安全关键系统的安全性成为急需解决的问题.基于形式化模型的复杂系统设计与分析是一种重要的安全性分析方法.本文工作对AIR6110标准中
针对无人机自组网和地面控制站通信时网关节点持续时间短并由此带来的数据传输时延过大和成功率不高等问题,提出了一种基于无人机-地面控制站链路状态预测的网关选择算法.该