钛铌氧化物用于锂离子电池负极的研究进展

来源 :储能科学与技术 | 被引量 : 0次 | 上传用户:cao123guo
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
钛铌氧化物(TNO)负极材料因其具有较高的比容量、安全的嵌锂电位、快速嵌锂通道和稳定的嵌锂结构已成为当前高功率、长寿命锂离子动力电池负极首选材料之一.然而,其较低的电子电导率限制了TNO负极材料高倍率性能的发挥.本文通过对近期相关研究的探讨,综述了TNO的结构特点、制备方法及改性策略,着重讨论了几种不同Ti/Nb比例材料的晶体结构及其氧化还原与插层赝电容的协同嵌锂机制,阐明其快速导锂机理;同时介绍了固相反应法、溶胶凝胶法、静电纺丝法、模板法和溶剂热法等几种TNO材料先进制备工艺及各自优势;重点分析了元素掺杂、缺陷设计以及与导电材料复合等改性方案对TNO电子传导特性的影响和对电化学性能的改善效果.最后,本文还对TNO作为负极材料在锂离子全电池和混合锂离子电容器两种储能体系中的研究现状、存在问题及应用前景进行了分析和阐述.综合分析表明,在TNO的改性方案中,元素掺杂和缺陷设计可以改变TNO的电子结构,导电材料复合结构设计可为其构建多维电子通路,而多种改性方案的迭代可明显提高TNO材料的倍率性能和循环稳定性,有望使其在高功率储能器件中获得良好应用.
其他文献
针对车用锂电池在高倍率放电情况下的热管理问题开展研究.基于电池生热量和散热量匹配的热管理理念,创新性地提出了确保电池热安全运行的临界换热系数hcr,并基于单电池的热电耦合模型发展了一种确定临界换热系数的数值分析方法.对极端工况下的18650锂电池进行临界换热系数的数值研究,发现放电倍率和换热环境温度是其主要影响因素.换热环境温度和放电倍率增加,临界换热系数会急剧增加.为了进一步提高电池的热安全运行能力,针对h
为明确跨季节蓄冷技术在设施农业应用场景下的技术经济性,选取济南地区某日光温室群为研究对象,采用以冰源热泵为核心的跨季节蓄冷系统实现温室群的全年冷热管理,建立系统的蓄冷量损失模型和节能、经济、环境效益评价模型,对系统蓄冷量、一次能源利用率、费用年值、动态投资回收期及污染物减排量进行分析,并同其他热泵系统和锅炉系统进行比较.结果表明:跨季节蓄冷体的全年冷量损失在5%以内,最大蓄冷量为170409.07 GJ,至全年结束仍有14509.47 GJ剩余,系统可满足温室群全年供冷供热需求;系统的供冷一次能源利用率为
针对新能源电动汽车的电量显示与安全管理问题,对其锂离子电池的荷电状态展开研究,提出了基于并行卡尔曼滤波器的全寿命下的电池荷电状态(state of charge,SOC)估计算法.建立了电池Thevenin一阶RC等效电路模型,通过开路实验的数据处理获取静态OCV-SOC关系表达式,并利用具有动态遗忘因子的最小二乘法对模型参数进行了辨识.以安时积分法为状态传递方程,在扩展卡尔曼滤波的基础上利用最大似然估计准则使模型噪声协方差具有自学习能力.考虑模型参数随电池寿命衰减而改变的问题设计并行结构的滤波器来分别进
微网系统中的分布式电源和负荷需求的随机问题促使微网储能容量决策成为一个研究的热点话题.本文提出了多时间尺度下微网系统中源-荷的随机性和预测出力偏差的不确定性的储能容量优化方法.利用该方法建立了系统能量平衡关系和鲁棒性经济协调指标,刻画出了储能系统容量优化方法和微网随机因子间的定量关系,并兼顾微网运行经济性的目标.结合分层理论建立了含分布式电源的微网储能容量的双层优化模型,并采用多目标粒子群算法对本文的优化模型进行求解.仿真结果表明,所提方法能够保证储能系统容量优化配置,同时能获得良好的经济效益.
锂离子电池剩余使用寿命(remaining useful life,RUL)预测对电池的使用维护极为重要,提出一种基于差分电压和Elman神经网络预测锂离子电池RUL的方法.首先,根据美国国家航天航空局(National Aeronautics and Space Administration,NASA)的锂离子电池数据集,分析电池差分电压曲线和充放电曲线,提取电池容量退化特征量;其次,通过Pearson法分析特征量之间的相关性,将充电差分电压曲线初始拐点值、放电差分电压曲线峰值、放电时间、静置时间作为电
随着电动汽车的广泛使用,锂离子动力电池俨然成为纯电动汽车首选的动力来源,然而其热安全性问题也日益突出.基于此,本文针对车用锂离子动力电池在服役工况下尤其高温时存在的安全性差、工作不可靠及循环寿命短等热问题,根据电池的动态散热特性着重介绍了车用锂离子动力电池常用的冷却方法,包括空冷散热、液冷散热、相变材料冷却、热管冷却和耦合散热,说明了集多种冷却方式耦合的热管理系统与单一散热方法相比不仅能提高散热效率,还可以改善电池的均温性.并结合上述散热方法的研究进展及关键技术,主要在空冷通道优化、液冷结构设计及冷却液介
针对退役动力电池储能系统中不同电池簇间的同期退役问题,提出了一种基于多分支拓扑的同期退役协同控制策略.该策略针对不同时段的功率需求,根据储能系统中电池健康状态(SOH)的失衡度,首先选择电池健康状态较好的电池簇优先出力或者使所有电池簇共同出力的模式,并根据电池簇荷电状态(SOC)分布情况,采用基于实时可变电流作为正反馈调节值的控制策略,实现储能系统中各电池簇间协同控制与平衡出力.经过多次充/放电过程,各电池簇的健康状态(SOH)将渐进趋于一致,进而实现不同电池簇同期退役的目的.最后,通过MATLAB软件进
基于无功补偿的无功功率实时平衡是电力系统安全稳定运行的重要保障.储能变流器具有四象限运行功能,可同时输出或吸收无功及有功功率,具有调频调压功能.基于储能的无功补偿技术具有响应速度快,连续可调、规模可控等优点,适用于高比例新能源和高电力电子化的新型电力系统.本文基于储能无功补偿原理,介绍了多种拓扑结构储能变流器的无功控制策略、串并联模块化放大以及中高压级联技术等研究进展.按照储能类型和应用场景,综述了储能以及储能混合无功补偿技术的发展进程及趋势,早期储能无功补偿主要采用超导储能、超级电容器及飞轮储能等短时间
锂电池荷电状态(state of charge,SOC)的准确估计对电池安全监测与能量的高效利用具有重要意义.提出一种新的验证模型,首先对电池新一代汽车合作伙伴(PNGV)模型进行改进,考虑电池充放电的差异,加入了二极管电阻的并联网络来代替传统PNGV模型的内阻,在此基础上,增加了一个RC的并联网络来表征电池的动静态特性.以三元锂电池为研究对象,通过遗忘因子最小二乘法(forgetting factor recursive least square,FFRLS)对改进模型进行在线参数辨识,并提出了主充电、
作为电化学储能技术之一的全钒液流电池(VRB),因其具有寿命长、安全性高、布置灵活等特点,是未来最有潜力实现长寿命、低成本的大规模储能技术.本文总结了电路模型和电化学模型两类全钒液流电池储能仿真模型:电路模型多是以固定的电路元件模拟电池回路串并联而成,电化学模型则是描述电池内部参数变化的数学模型.同时,本文总结了全钒液流电池常用的荷电状态(SOC)监测方法:开路电压法、电流积分法与卡尔曼滤波算法的基本原理及使用方法.SOC监测方法是对部分仿真模型的补充,以期构建更为完善的全钒液流电池储能系统.