论文部分内容阅读
传统序列超分辨率方法对低分辨率视频序列的要求较高,一旦序列中没有包含足够的信息,会造成重建高分辨率图像质量的下降。为此,提出一种结合稀疏编码模型的序列超分辨率算法。利用概率运动场从低分辨率序列中重建一幅高分辨率图像,根据自适应阈值确定重建有效和无效区域,使用稀疏编码模型对无效区域进行补全重建。实验结果表明,该算法可以采用序列自身的信息和稀疏字典中的信息来重建高分辨率图像,在序列信息有破缺时,与仅利用序列自身信息或仅利用单幅图像的算法相比,具有更好的鲁棒性和广泛的适用性。