论文部分内容阅读
针对协同过滤推荐系统在预测过程中容易泄漏用户概貌数据的问题,在不影响推荐准确性的前提下,提出一种用户数据混淆策略,使响应用户的评分数据在计算用户相似度之前被假数据代替,用户尽量少泄露(或不泄露)个人评分信息,进而实现用户隐私的保护。通过实验分析数据混淆策略对协同过滤推荐准确性的影响,证明该策略的有效性。