论文部分内容阅读
针对现有的co-location模式挖掘算法无法有效处理不均匀分布空间对象的问题,提出一种不均匀模糊空间对象的分层次co-location模式挖掘方法。首先提出一种不均匀数据集的生成方法;然后对不均匀分布的数据集进行层次划分,使每个区域具有均匀的空间分布;再基于改进的PO_RI_PC算法对划分后的模糊对象进行空间数据挖掘。该方法基于距离变化系数构建每个子区域的邻域关系图,进而完成区域融合,实现co-location模式挖掘。实验结果表明,与传统方法相比,所提方法的执行效率更高,随实例个数和不均匀度的