论文部分内容阅读
为了研究垂直上升管中的气液两相流的流型,利用自制的多电导探针的测量系统采集了四种典型流型的电导波动信息。由于气液两相流电导波动信号的非平稳特征以及神经网络学习收敛慢等问题,提出了一种基于希尔伯特一黄变换(hilbert.huang transform,HHT)和隐马尔可夫模型(hidden markov model,HMM)的两相流流型识别方法。该方法首先将信号经验模态分解(empirical mode decomposition,EMD)后的固有模态函数(IMFs)进行希尔伯特变换得到其幅值能量,并将其