论文部分内容阅读
为将神经网络应用于最优化问题的求解,对具有无穷时滞的Cohen-Grossberg神经网络平衡点的存在性、唯一性和全局渐近稳定性进行了探讨.在不假设激活函数有界性、单调性和可微性的情况下,得到了系统平衡点的存在性条件.利用向量Liapunov函数法,构造适当的含有无穷时滞的微分一积分不等式,并分析了微分-积分不等式的稳定性,得到了Cohen—Grossberg神经网络系统全局渐近稳定性的判据.通过判断由神经网络的权系数、自反馈函数以及激励函数构造的矩阵是否为M-矩阵,即可得到Cohen—Grossberg