论文部分内容阅读
针对蛋白质相互作用(protein-protein interaction,PPI)网络中存在大量噪声以及现有关键蛋白识别方法准确率不高等问题,提出了一种基于中心性和模块特性(united centrality and modularity,UCM)的方法来识别关键蛋白质。首先,整合蛋白质拓扑数据和生物数据构建多元属性网络,以降低PPI网络中噪声的影响;其次,根据关键蛋白质的拓扑特性和生物特性,提出一种挖掘稠密且高度共表达的关键模块算法,从多元属性网络中挖掘高可靠性的关键模块,以从多维角度强化关键蛋