基于卷积注意力模块和双通道网络的微表情识别算法

来源 :计算机应用 | 被引量 : 1次 | 上传用户:kpqkxx03592
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
微表情是一种人类在试图隐藏自己真实情感时作出的面部动作,具有持续时间短、幅度小的典型特点。针对微表情识别难度大、识别效果不理想的问题,提出一种基于卷积注意力模块(CBAM)和双通道网络(DPN)的微表情识别算法——CBAM-DPN。首先,进行典型微表情数据集的数据融合;然后,分析序列帧中像素的变化值以确定顶点帧位置,再对顶点帧进行图像增强处理;最后,基于CBAM-DPN对图像增强后的微表情顶点帧进行特征的有效提取,并构建分类器对微表情进行识别。优化后模型的未加权F1值(UF1)和未加权平均召回率(U
其他文献