论文部分内容阅读
针对传统的leNet-5在复杂纹理的图像分类上图片的识别精度不高、模型训练效率较低等问题,在传统leNet-5的基础上对其进行了改进.采用PReLU函数作为激活函数,在网络中加入Inception结构模块组、采用DropOut策略并加入Batch Normalization层等,提出了一种改进的leNet-5模型.采用2018年AI challenger农作物病虫害检测中的番茄病虫害数据集,通过数据增强的方式对数据集进行扩充,使训练集的数量达到142 800张.实验表明,在识别番茄病虫害时,本文提出