论文部分内容阅读
为提高水电机组故障诊断的准确率,提出基于优化支持向量机多分类器的水电机组故障诊断方法。支持向量机(Support Vector Machine,简称SVM)在解决小样本问题上有着突出的表现,针对其参数设置采用人工蜜蜂群(artificial bee colony,简称ABC)进行参数优化。建立基于Fisher加权的朴素贝叶斯分类器(Attribute Fisher Weighted Naive Bayes Classifier,简称FWNBC)和基于Mahalanobis距离的分类器(Mahalanobi