Cycle Time Analysis for Wafer Revisiting Process in Scheduling of Single-arm Cluster Tools

来源 :International Journal of Automation & Computing | 被引量 : 0次 | 上传用户:assofour
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Some wafer fabrication processes performed by cluster tools require revisiting. With wafer revisiting, a cluster tool is very difficult to be scheduled due to a large number of possible schedules for the revisiting process. Atomic layer deposition (ALD) is a typical process with wafer revisiting that should be performed by cluster tools. This paper discusses the scheduling problem of single-arm cluster tools for the ALD process. In scheduling such a system, the most difficult part is to schedule the revisiting process such that the cycle time is minimized. Thus, this paper studies the revisiting process of ALD with revisiting times k = 3, 4, and 5, and analytical expressions are obtained to calculate the cycle time for the k possible schedules. Then, the schedule with the minimal cycle time is the optimal one. In this way, the scheduling problem of such a revisiting process becomes very simple and this is a significant improvement in scheduling cluster tools with wafer revisiting. Illustrative example is presented to show the application of the proposed method. Some wafer fabrication processes performed by cluster tools require revisiting. With wafer revisiting, a cluster tool is very difficult to be scheduled due to a large number of possible schedules for the revisiting process. Atomic layer deposition (ALD) is a typical process with wafer revisiting This paper discusses the scheduling problem of single-arm cluster tools for the ALD process. This paper discusses the scheduling problem of single-arm cluster tools for the ALD process. , this paper studies the revisiting process of ALD with revisiting times k = 3, 4, and 5, and analytical expressions are obtained to calculate the cycle time for the k possible schedules. Then, the schedule with the minimal cycle time is the optimal one . In this way, the scheduling problem of such a revisiting process becomes very simple and this is a significant improvement in scheduling cluster tools with wafer revisiting. Illu strative example is presented to show the application of the proposed method.
其他文献