论文部分内容阅读
算法的复杂度平滑分析是对许多算法在实际应用中很有效但其最坏情况复杂度却很糟这一矛盾给出的更合理的解释.高性能计算机被广泛用于求解大规模线性系统及大规模矩阵的分解.求解线性系统的最简单且容易实现的算法是高斯消元算法(高斯算法).用高斯算法求解n个方程n个变量的线性系统所需要的算术运算次数为O(n3).如果这些方程中的系数用m位表示,则最坏情况下需要机器位数mn位来运行高斯算法.这是因为在消元过程中可能产生异常大的中间项.但大量的数值实验表明,在实际应用中,需要如此高的精度是罕见的.异常大的矩阵条件数和增长因